Normalized defining polynomial
\( x^{8} - 3 x^{7} + 5671 x^{6} - 55449 x^{5} + 17412064 x^{4} + 123908628 x^{3} + 9794653488 x^{2} + 598996548288 x + 9286969469184 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(783242835309646294823246161=97^{6}\cdot 313^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2300.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $97, 313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{24} a^{4} - \frac{1}{12} a^{3} - \frac{1}{24} a^{2} + \frac{1}{12} a$, $\frac{1}{264} a^{5} + \frac{1}{132} a^{4} - \frac{17}{264} a^{3} - \frac{31}{132} a^{2} + \frac{7}{66} a$, $\frac{1}{57024} a^{6} + \frac{31}{19008} a^{5} + \frac{77}{5184} a^{4} + \frac{989}{19008} a^{3} + \frac{335}{7128} a^{2} - \frac{335}{1584} a - \frac{17}{36}$, $\frac{1}{8320573718603747030605824} a^{7} - \frac{2700551272009805359}{924508190955971892289536} a^{6} - \frac{10305343037766634616285}{8320573718603747030605824} a^{5} + \frac{29209831911075554572969}{2773524572867915676868608} a^{4} - \frac{68999113892401473275771}{2080143429650936757651456} a^{3} + \frac{74646567696211264697627}{693381143216978919217152} a^{2} + \frac{6367135273481838626725}{28890880967374121634048} a + \frac{75170307168704311385}{437740620717789721728}$
Class group and class number
$C_{2}\times C_{7342}\times C_{7342}$, which has order $107809928$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 522483.769592 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{30361}) \), \(\Q(\sqrt{313}) \), \(\Q(\sqrt{97}) \), \(\Q(\sqrt{97}, \sqrt{313})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $97$ | 97.4.3.2 | $x^{4} - 2425$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 97.4.3.2 | $x^{4} - 2425$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 313 | Data not computed | ||||||