Normalized defining polynomial
\( x^{8} - x^{7} - 5 x^{6} + x^{5} + 9 x^{4} + 11 x^{3} - 5 x^{2} - 11 x + 16 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7779240000=2^{6}\cdot 3^{4}\cdot 5^{4}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $17.23$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{20} a^{6} + \frac{3}{20} a^{5} - \frac{1}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{20} a^{2} + \frac{3}{20} a - \frac{1}{5}$, $\frac{1}{40} a^{7} + \frac{7}{40} a^{5} + \frac{1}{10} a^{4} + \frac{1}{8} a^{3} + \frac{7}{40} a - \frac{1}{5}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{8} a^{7} - \frac{5}{8} a^{5} - \frac{1}{2} a^{4} + \frac{5}{8} a^{3} + 2 a^{2} + \frac{11}{8} a - 1 \), \( \frac{1}{8} a^{7} + \frac{1}{10} a^{6} - \frac{33}{40} a^{5} - \frac{9}{10} a^{4} + \frac{33}{40} a^{3} + \frac{31}{10} a^{2} + \frac{127}{40} a - \frac{7}{5} \), \( \frac{1}{40} a^{7} - \frac{13}{40} a^{5} + \frac{1}{10} a^{4} + \frac{1}{8} a^{3} + a^{2} - \frac{13}{40} a - \frac{1}{5} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 63.9966137934 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.6.4.1 | $x^{6} + 25 x^{3} + 200$ | $3$ | $2$ | $4$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 2.5e2_7.3t2.1c1 | $2$ | $ 5^{2} \cdot 7 $ | $x^{3} - x^{2} + 2 x - 3$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.2e6_3e2_5e2_7.4t5.2c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 $ | $x^{4} - 2 x^{3} + 10 x^{2} + 12 x - 6$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_5e2_7.4t5.1c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 7 $ | $x^{4} - 2 x^{3} - 2 x^{2} - 2$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e2_5e2_7.4t5.1c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7 $ | $x^{4} - 4 x^{2} - 24 x - 8$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e2_5e2_7e2.6t8.2c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ | $x^{4} - 2 x^{3} + 10 x^{2} + 12 x - 6$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_3e2_5e2_7e2.6t8.1c1 | $3$ | $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2}$ | $x^{4} - 4 x^{2} - 24 x - 8$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_5e2_7e2.6t8.5c1 | $3$ | $ 2^{6} \cdot 5^{2} \cdot 7^{2}$ | $x^{4} - 2 x^{3} - 2 x^{2} - 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e6_3e4_5e4_7e3.8t34.1c1 | $6$ | $ 2^{6} \cdot 3^{4} \cdot 5^{4} \cdot 7^{3}$ | $x^{8} - x^{7} - 5 x^{6} + x^{5} + 9 x^{4} + 11 x^{3} - 5 x^{2} - 11 x + 16$ | $V_4^2:S_3$ (as 8T34) | $1$ | $0$ |