Normalized defining polynomial
\( x^{8} - x^{7} + 78x^{6} - 100x^{5} + 2541x^{4} - 7670x^{3} + 65772x^{2} - 36712x + 1485296 \)
Invariants
Degree: | $8$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 4]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(7765332671265625\)
\(\medspace = 5^{6}\cdot 89^{6}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(96.89\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Ramified primes: |
\(5\), \(89\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | 8.0.7765332671265625.1$^{8}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a$, $\frac{1}{20}a^{6}-\frac{1}{4}a^{5}-\frac{3}{10}a^{4}+\frac{1}{5}a^{3}+\frac{9}{20}a^{2}-\frac{1}{10}a+\frac{1}{5}$, $\frac{1}{800847072035240}a^{7}+\frac{5836312763973}{800847072035240}a^{6}-\frac{7426852614307}{100105884004405}a^{5}+\frac{16753299162772}{100105884004405}a^{4}+\frac{386333588283621}{800847072035240}a^{3}-\frac{6088416141048}{20021176800881}a^{2}+\frac{10006463012541}{100105884004405}a+\frac{49581642084244}{100105884004405}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
$C_{2}\times C_{6}\times C_{12}$, which has order $144$
Unit group
Rank: | $3$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{62631}{428031572440}a^{7}+\frac{14980157}{428031572440}a^{6}-\frac{21599143}{214015786220}a^{5}+\frac{137040969}{53503946555}a^{4}-\frac{2810569893}{428031572440}a^{3}+\frac{8873281973}{214015786220}a^{2}-\frac{2392402829}{10700789311}a+\frac{29794446921}{53503946555}$, $\frac{28333}{727519640}a^{7}+\frac{46351}{727519640}a^{6}+\frac{813011}{363759820}a^{5}+\frac{99752}{90939955}a^{4}+\frac{47264721}{727519640}a^{3}-\frac{46800161}{363759820}a^{2}+\frac{5364641}{18187991}a-\frac{524800172}{90939955}$, $\frac{16210691021}{200211768008810}a^{7}+\frac{8343038787}{200211768008810}a^{6}+\frac{97597478492}{100105884004405}a^{5}-\frac{776469624109}{100105884004405}a^{4}+\frac{8947680086587}{200211768008810}a^{3}+\frac{10994582817893}{100105884004405}a^{2}+\frac{29520268516964}{20021176800881}a-\frac{395662214754241}{100105884004405}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 162.044654479 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 162.044654479 \cdot 144}{2\cdot\sqrt{7765332671265625}}\cr\approx \mathstrut & 0.206351032396 \end{aligned}\]
Galois group
A solvable group of order 8 |
The 5 conjugacy class representatives for $Q_8$ |
Character table for $Q_8$ |
Intermediate fields
\(\Q(\sqrt{89}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{445}) \), \(\Q(\sqrt{5}, \sqrt{89})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | ${\href{/padicField/3.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.4.0.1}{4} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
5.4.3.2 | $x^{4} + 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
\(89\)
| 89.4.3.1 | $x^{4} + 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
89.4.3.1 | $x^{4} + 89$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.445.2t1.a.a | $1$ | $ 5 \cdot 89 $ | \(\Q(\sqrt{445}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
* | 1.89.2t1.a.a | $1$ | $ 89 $ | \(\Q(\sqrt{89}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
*2 | 2.198025.8t5.a.a | $2$ | $ 5^{2} \cdot 89^{2}$ | 8.0.7765332671265625.1 | $Q_8$ (as 8T5) | $-1$ | $-2$ |