Normalized defining polynomial
\( x^{8} + 9544 x^{6} + 10617700 x^{4} + 3328470000 x^{2} + 244602281250 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7386062380882957944509679271936=2^{31}\cdot 1193^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $7220.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(38176=2^{5}\cdot 1193\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{15} a^{3} - \frac{1}{15} a$, $\frac{1}{1125} a^{4} + \frac{344}{1125} a^{2} - \frac{1}{5}$, $\frac{1}{5625} a^{5} - \frac{31}{5625} a^{3} + \frac{2}{75} a$, $\frac{1}{15518390625} a^{6} + \frac{165569}{15518390625} a^{4} + \frac{68697779}{206911875} a^{2} + \frac{379441}{2758825}$, $\frac{1}{2094982734375} a^{7} - \frac{151569806}{2094982734375} a^{5} + \frac{601157077}{83799309375} a^{3} + \frac{6448856}{372441375} a$
Class group and class number
$C_{2}\times C_{4286244040}$, which has order $8572488080$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{247556}{5172796875} a^{6} + \frac{2336461114}{5172796875} a^{4} + \frac{31747654434}{68970625} a^{2} + \frac{304989923303}{2758825} \), \( \frac{181246}{5172796875} a^{6} + \frac{1592821474}{5172796875} a^{4} + \frac{28820520802}{206911875} a^{2} + \frac{31266285383}{2758825} \), \( \frac{750856967}{344853125} a^{6} + \frac{21259940436569}{1034559375} a^{4} + \frac{866610070701676}{41382375} a^{2} + \frac{554983706661955}{110353} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34424.5242473 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{2386}) \), 4.4.3477373044736.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.5 | $x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 1193 | Data not computed | ||||||