Properties

Label 8.0.738606238088...1936.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{31}\cdot 1193^{7}$
Root discriminant $7220.24$
Ramified primes $2, 1193$
Class number $8572488080$ (GRH)
Class group $[2, 4286244040]$ (GRH)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![244602281250, 0, 3328470000, 0, 10617700, 0, 9544, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 9544*x^6 + 10617700*x^4 + 3328470000*x^2 + 244602281250)
 
gp: K = bnfinit(x^8 + 9544*x^6 + 10617700*x^4 + 3328470000*x^2 + 244602281250, 1)
 

Normalized defining polynomial

\( x^{8} + 9544 x^{6} + 10617700 x^{4} + 3328470000 x^{2} + 244602281250 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(7386062380882957944509679271936=2^{31}\cdot 1193^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $7220.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 1193$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(38176=2^{5}\cdot 1193\)
Dirichlet character group:    not computed
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{15} a^{3} - \frac{1}{15} a$, $\frac{1}{1125} a^{4} + \frac{344}{1125} a^{2} - \frac{1}{5}$, $\frac{1}{5625} a^{5} - \frac{31}{5625} a^{3} + \frac{2}{75} a$, $\frac{1}{15518390625} a^{6} + \frac{165569}{15518390625} a^{4} + \frac{68697779}{206911875} a^{2} + \frac{379441}{2758825}$, $\frac{1}{2094982734375} a^{7} - \frac{151569806}{2094982734375} a^{5} + \frac{601157077}{83799309375} a^{3} + \frac{6448856}{372441375} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4286244040}$, which has order $8572488080$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{247556}{5172796875} a^{6} + \frac{2336461114}{5172796875} a^{4} + \frac{31747654434}{68970625} a^{2} + \frac{304989923303}{2758825} \),  \( \frac{181246}{5172796875} a^{6} + \frac{1592821474}{5172796875} a^{4} + \frac{28820520802}{206911875} a^{2} + \frac{31266285383}{2758825} \),  \( \frac{750856967}{344853125} a^{6} + \frac{21259940436569}{1034559375} a^{4} + \frac{866610070701676}{41382375} a^{2} + \frac{554983706661955}{110353} \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 34424.5242473 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8$ (as 8T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 8
The 8 conjugacy class representatives for $C_8$
Character table for $C_8$

Intermediate fields

\(\Q(\sqrt{2386}) \), 4.4.3477373044736.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.8.0.1}{8} }$ ${\href{/LocalNumberField/17.8.0.1}{8} }$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.31.5$x^{8} + 8 x^{6} + 4 x^{4} + 16 x^{2} + 34$$8$$1$$31$$C_8$$[3, 4, 5]$
1193Data not computed