Normalized defining polynomial
\( x^{8} - x^{7} + 11478 x^{6} + 6516386 x^{5} - 588887459 x^{4} - 13801397365 x^{3} + 11680953965900 x^{2} - 914182000547500 x + 54366150332000000 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7043484173213574853891721381764967081=409^{7}\cdot 449^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40{,}362.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $409, 449$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(183641=409\cdot 449\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{40} a^{4} + \frac{1}{20} a^{3} - \frac{1}{40} a^{2} - \frac{1}{20} a$, $\frac{1}{200} a^{5} + \frac{1}{100} a^{4} - \frac{1}{200} a^{3} + \frac{19}{100} a^{2} + \frac{1}{5} a$, $\frac{1}{184000} a^{6} + \frac{3}{8000} a^{5} + \frac{21}{8000} a^{4} - \frac{20329}{184000} a^{3} - \frac{8041}{46000} a^{2} - \frac{3691}{9200} a + \frac{2}{23}$, $\frac{1}{47984853809792171770610985042560000} a^{7} + \frac{44834248636551496131541530647}{23992426904896085885305492521280000} a^{6} + \frac{620946710976445633883912228687}{260787248966261803101146657840000} a^{5} + \frac{277436574811380281995225799614573}{23992426904896085885305492521280000} a^{4} + \frac{10030629182391481708829866687389411}{47984853809792171770610985042560000} a^{3} + \frac{126441323797891499799816178136587}{1199621345244804294265274626064000} a^{2} + \frac{22541507338759272025602779320233}{95969707619584343541221970085120} a - \frac{7738268913356768370004776545}{23069641254707774889716819732}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{1092083528}$, which has order $17473336448$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81911039.9521 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{183641}) \), 4.4.6193112184043721.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 409 | Data not computed | ||||||
| 449 | Data not computed | ||||||