Normalized defining polynomial
\( x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(70304000=2^{8}\cdot 5^{3}\cdot 13^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $9.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( a^{7} - \frac{7}{4} a^{6} - \frac{9}{4} a^{5} - a^{4} + \frac{41}{4} a^{3} + 3 a^{2} + \frac{3}{4} a - \frac{7}{4} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a \), \( \frac{1}{2} a^{6} - a^{5} - a^{4} + 5 a^{2} - \frac{1}{2} \), \( \frac{1}{2} a^{7} - \frac{5}{4} a^{6} - \frac{1}{4} a^{5} + \frac{21}{4} a^{3} - 3 a^{2} + \frac{5}{4} a - \frac{1}{4} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10.0483494552 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.0.1040.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ |
| 2.4.4.1 | $x^{4} + 8 x^{2} + 4$ | $2$ | $2$ | $4$ | $C_2^2$ | $[2]^{2}$ | |
| $5$ | 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $13$ | 13.4.3.1 | $x^{4} - 13$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e2_5_13.2t1.1c1 | $1$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{2} + 65$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.5_13.2t1.1c1 | $1$ | $ 5 \cdot 13 $ | $x^{2} - x - 16$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.5_13.4t1.2c1 | $1$ | $ 5 \cdot 13 $ | $x^{4} - x^{3} - 24 x^{2} + 4 x + 16$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e2_5_13.4t1.4c1 | $1$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{4} + 65 x^{2} + 1040$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.5_13.4t1.2c2 | $1$ | $ 5 \cdot 13 $ | $x^{4} - x^{3} - 24 x^{2} + 4 x + 16$ | $C_4$ (as 4T1) | $0$ | $1$ | |
| 1.2e2_5_13.4t1.4c2 | $1$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{4} + 65 x^{2} + 1040$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 2.2e2_5e2_13e2.4t3.3c1 | $2$ | $ 2^{2} \cdot 5^{2} \cdot 13^{2}$ | $x^{4} + 260$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| * | 2.2e2_5_13.4t3.3c1 | $2$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{4} + x^{2} - 4 x + 4$ | $D_{4}$ (as 4T3) | $1$ | $0$ |
| 2.2e2_5e2_13e2.8t17.2c1 | $2$ | $ 2^{2} \cdot 5^{2} \cdot 13^{2}$ | $x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1$ | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ | |
| 2.2e2_5e2_13e2.8t17.2c2 | $2$ | $ 2^{2} \cdot 5^{2} \cdot 13^{2}$ | $x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1$ | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ | |
| * | 2.2e2_5_13.8t17.2c1 | $2$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1$ | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |
| * | 2.2e2_5_13.8t17.2c2 | $2$ | $ 2^{2} \cdot 5 \cdot 13 $ | $x^{8} - 2 x^{7} - 2 x^{6} + 11 x^{4} - 2 x^{2} - 2 x + 1$ | $C_4\wr C_2$ (as 8T17) | $0$ | $0$ |