Normalized defining polynomial
\( x^{8} - 4 x^{7} - x^{6} + 8 x^{5} + 31 x^{4} - 50 x^{3} - 43 x^{2} + 58 x + 97 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(694427904=2^{8}\cdot 3^{6}\cdot 61^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{261997} a^{7} - \frac{50837}{261997} a^{6} + \frac{120809}{261997} a^{5} + \frac{125791}{261997} a^{4} - \frac{35090}{261997} a^{3} + \frac{54344}{261997} a^{2} + \frac{27773}{261997} a + \frac{1206}{2701}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{2149}{261997} a^{7} + \frac{4036}{261997} a^{6} - \frac{20486}{261997} a^{5} - \frac{56045}{261997} a^{4} + \frac{46726}{261997} a^{3} + \frac{196591}{261997} a^{2} - \frac{51139}{261997} a - \frac{3967}{2701} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 40.7339437812 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $Q_8:C_2$ |
| Character table for $Q_8:C_2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| $61$ | 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.3_61.2t1.1c1 | $1$ | $ 3 \cdot 61 $ | $x^{2} - x + 46$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_61.2t1.1c1 | $1$ | $ 2^{2} \cdot 61 $ | $x^{2} + 61$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e2_3_61.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 61 $ | $x^{2} - 183$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.61.2t1.1c1 | $1$ | $ 61 $ | $x^{2} - x - 15$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 2.2e2_3e2_61.8t11.1c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 61 $ | $x^{8} - 4 x^{7} - x^{6} + 8 x^{5} + 31 x^{4} - 50 x^{3} - 43 x^{2} + 58 x + 97$ | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |
| * | 2.2e2_3e2_61.8t11.1c2 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 61 $ | $x^{8} - 4 x^{7} - x^{6} + 8 x^{5} + 31 x^{4} - 50 x^{3} - 43 x^{2} + 58 x + 97$ | $Q_8:C_2$ (as 8T11) | $0$ | $0$ |