Normalized defining polynomial
\( x^{8} + 8 x^{6} - 24 x^{5} + 118 x^{4} - 96 x^{3} + 552 x^{2} - 1224 x + 1165 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(68035838611456=2^{12}\cdot 359^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 359$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{3}{8} a + \frac{1}{8}$, $\frac{1}{40} a^{6} + \frac{1}{20} a^{5} + \frac{1}{40} a^{4} + \frac{2}{5} a^{3} + \frac{9}{40} a^{2} + \frac{3}{20} a - \frac{3}{8}$, $\frac{1}{35800} a^{7} - \frac{289}{35800} a^{6} - \frac{187}{4475} a^{5} + \frac{68}{895} a^{4} + \frac{15063}{35800} a^{3} - \frac{3603}{35800} a^{2} + \frac{4047}{17900} a - \frac{1339}{3580}$
Class group and class number
$C_{12}$, which has order $12$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{661}{35800} a^{7} - \frac{1289}{35800} a^{6} + \frac{3699}{35800} a^{5} - \frac{2533}{7160} a^{4} + \frac{77633}{35800} a^{3} - \frac{127973}{35800} a^{2} + \frac{75899}{35800} a + \frac{4627}{7160} \), \( \frac{737}{35800} a^{7} - \frac{1773}{35800} a^{6} + \frac{4563}{35800} a^{5} - \frac{1643}{7160} a^{4} + \frac{44601}{35800} a^{3} - \frac{29481}{35800} a^{2} - \frac{57177}{35800} a + \frac{21269}{7160} \), \( \frac{19}{2} a^{4} + 38 a^{2} - 114 a + \frac{1689}{2} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1845.00962962 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{359}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 359 | Data not computed | ||||||
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e2_359.2t1.1c1 | $1$ | $ 2^{2} \cdot 359 $ | $x^{2} - 359$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 2.2e2_359.3t2.1c1 | $2$ | $ 2^{2} \cdot 359 $ | $x^{3} - 11 x - 12$ | $S_3$ (as 3T2) | $1$ | $2$ | |
| 3.2e6_359e2.6t8.2c1 | $3$ | $ 2^{6} \cdot 359^{2}$ | $x^{4} + x^{2} - 4 x + 3$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_359.4t5.1c1 | $3$ | $ 2^{4} \cdot 359 $ | $x^{4} - 5 x^{2} - 2 x + 1$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| 3.2e4_359e2.6t8.1c1 | $3$ | $ 2^{4} \cdot 359^{2}$ | $x^{4} - x^{3} + 3 x^{2} + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e4_359.4t5.2c1 | $3$ | $ 2^{4} \cdot 359 $ | $x^{4} + x^{2} - 4 x + 3$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_359e2.6t8.1c1 | $3$ | $ 2^{6} \cdot 359^{2}$ | $x^{4} - 5 x^{2} - 2 x + 1$ | $S_4$ (as 4T5) | $1$ | $3$ | |
| 3.2e2_359.4t5.1c1 | $3$ | $ 2^{2} \cdot 359 $ | $x^{4} - x^{3} + 3 x^{2} + 2$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e10_359e3.8t34.1c1 | $6$ | $ 2^{10} \cdot 359^{3}$ | $x^{8} + 8 x^{6} - 24 x^{5} + 118 x^{4} - 96 x^{3} + 552 x^{2} - 1224 x + 1165$ | $V_4^2:S_3$ (as 8T34) | $1$ | $-2$ |