Normalized defining polynomial
\( x^{8} + 473 x^{6} + 43247 x^{4} - 3696749 x^{2} + 483032484 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(677922439794791223113761=113^{4}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $952.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{112} a^{4} - \frac{13}{112} a^{2} - \frac{1}{2} a + \frac{9}{28}$, $\frac{1}{22176} a^{5} - \frac{1}{224} a^{4} + \frac{235}{2464} a^{3} - \frac{43}{224} a^{2} + \frac{23}{5544} a + \frac{19}{56}$, $\frac{1}{2483712} a^{6} - \frac{163}{137984} a^{4} + \frac{104537}{2483712} a^{2} + \frac{717}{6272}$, $\frac{1}{551384064} a^{7} - \frac{1}{4967424} a^{6} - \frac{3371}{275692032} a^{5} - \frac{1069}{275968} a^{4} - \frac{50172487}{551384064} a^{3} - \frac{1058105}{4967424} a^{2} - \frac{60867545}{137846016} a - \frac{2733}{12544}$
Class group and class number
$C_{838}\times C_{75420}$, which has order $63201960$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{2813184} a^{7} + \frac{181}{1406592} a^{5} + \frac{17273}{2813184} a^{3} - \frac{1275641}{703296} a - 20 \), \( \frac{365}{68923008} a^{7} + \frac{11899}{3132864} a^{5} + \frac{23807125}{68923008} a^{3} - \frac{1399593157}{17230752} a - 776 \), \( \frac{1409}{19692288} a^{7} + \frac{98741}{9846144} a^{5} - \frac{17860103}{19692288} a^{3} + \frac{454419335}{4923072} a \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8223.52656633 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{113}) \), \(\Q(\sqrt{401}) \), \(\Q(\sqrt{45313}) \), \(\Q(\sqrt{113}, \sqrt{401})\), 4.0.7286375713.1 x2, 4.0.823360455569.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $113$ | 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 113.4.2.1 | $x^{4} + 2147 x^{2} + 1276900$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 401 | Data not computed | ||||||