Properties

Label 8.0.6769446830888452096.8
Degree $8$
Signature $[0, 4]$
Discriminant $2^{24}\cdot 797^{4}$
Root discriminant $225.85$
Ramified primes $2, 797$
Class number $112710$ (GRH)
Class group $[17, 6630]$ (GRH)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![6399840001, 0, 126089584, 0, 792020, 0, 1592, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 1592*x^6 + 792020*x^4 + 126089584*x^2 + 6399840001)
 
gp: K = bnfinit(x^8 + 1592*x^6 + 792020*x^4 + 126089584*x^2 + 6399840001, 1)
 

Normalized defining polynomial

\( x^{8} + 1592 x^{6} + 792020 x^{4} + 126089584 x^{2} + 6399840001 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6769446830888452096=2^{24}\cdot 797^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $225.85$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 797$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(12752=2^{4}\cdot 797\)
Dirichlet character group:    $\lbrace$$\chi_{12752}(1,·)$, $\chi_{12752}(6375,·)$, $\chi_{12752}(6377,·)$, $\chi_{12752}(12751,·)$, $\chi_{12752}(3187,·)$, $\chi_{12752}(3189,·)$, $\chi_{12752}(9563,·)$, $\chi_{12752}(9565,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{399} a^{4} - \frac{2}{399} a^{2} - \frac{199}{399}$, $\frac{1}{31919601} a^{5} - \frac{158804}{31919601} a^{3} + \frac{556805}{31919601} a$, $\frac{1}{31919601} a^{6} + \frac{398}{10639867} a^{4} + \frac{236809}{31919601} a^{2} + \frac{1}{399}$, $\frac{1}{31919601} a^{7} - \frac{238403}{4559943} a^{3} + \frac{5566450}{31919601} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{17}\times C_{6630}$, which has order $112710$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{31919601} a^{6} + \frac{398}{10639867} a^{4} + \frac{236809}{31919601} a^{2} + \frac{1}{399} \),  \( \frac{200}{31919601} a^{5} + \frac{158801}{31919601} a^{3} + \frac{15602197}{31919601} a - 1 \),  \( \frac{1}{31919601} a^{7} + \frac{199}{4559943} a^{5} + \frac{79202}{4559943} a^{3} + \frac{15681664}{10639867} a + 1 \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19.534360053 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4$ (as 8T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_4\times C_2$
Character table for $C_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-1594}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-797}) \), \(\Q(\sqrt{2}, \sqrt{-797})\), 4.0.1300908032.2, \(\Q(\zeta_{16})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.24.9$x^{8} + 8 x^{7} + 14 x^{4} + 4 x^{2} + 8 x + 30$$8$$1$$24$$C_4\times C_2$$[2, 3, 4]$
797Data not computed