Normalized defining polynomial
\( x^{8} - 32 x^{6} + 1176 x^{4} - 6125 x^{2} + 211600 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(67374957650625=3^{4}\cdot 5^{4}\cdot 191^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 191$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{5} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{713310} a^{6} - \frac{8701}{356655} a^{4} - \frac{1}{2} a^{3} + \frac{34123}{356655} a^{2} + \frac{20096}{71331}$, $\frac{1}{65624520} a^{7} - \frac{210224}{8203065} a^{5} + \frac{7566259}{16406130} a^{3} + \frac{259093}{4374968} a - \frac{1}{2}$
Class group and class number
$C_{3}\times C_{78}$, which has order $234$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{1682680} a^{7} + \frac{111}{210335} a^{5} - \frac{5801}{420670} a^{3} + \frac{104207}{336536} a - \frac{1}{2} \), \( \frac{7}{356655} a^{6} - \frac{2929}{356655} a^{4} + \frac{2182}{356655} a^{2} - \frac{40955}{23777} \), \( \frac{2777}{65624520} a^{7} - \frac{1}{5487} a^{6} - \frac{4837}{5468710} a^{5} + \frac{53}{10974} a^{4} + \frac{239141}{5468710} a^{3} - \frac{2975}{10974} a^{2} + \frac{8207011}{13124904} a + \frac{763}{3658} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59.993443202 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-955}) \), \(\Q(\sqrt{-191}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-191})\), 4.0.1641645.1 x2, 4.2.42975.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.42975.1, 4.0.1641645.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $191$ | 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 191.2.1.2 | $x^{2} + 382$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.191.2t1.1c1 | $1$ | $ 191 $ | $x^{2} - x + 48$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.5_191.2t1.1c1 | $1$ | $ 5 \cdot 191 $ | $x^{2} - x + 239$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.3e2_5_191.4t3.3c1 | $2$ | $ 3^{2} \cdot 5 \cdot 191 $ | $x^{8} - 32 x^{6} + 1176 x^{4} - 6125 x^{2} + 211600$ | $D_4$ (as 8T4) | $1$ | $0$ |