Normalized defining polynomial
\( x^{8} - 3x^{7} + 11x^{6} - 22x^{5} + 42x^{4} - 52x^{3} + 66x^{2} - 43x + 37 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(64242477\)
\(\medspace = 3^{4}\cdot 13^{3}\cdot 19^{2}\)
|
| |
| Root discriminant: | \(9.46\) |
| |
| Galois root discriminant: | $3^{1/2}13^{3/4}19^{1/2}\approx 51.688620557322054$ | ||
| Ramified primes: |
\(3\), \(13\), \(19\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{13}) \) | ||
| $\Aut(K/\Q)$: | $C_4$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{1099}a^{7}-\frac{36}{1099}a^{6}+\frac{100}{1099}a^{5}-\frac{25}{1099}a^{4}-\frac{232}{1099}a^{3}-\frac{89}{1099}a^{2}-\frac{42}{157}a-\frac{232}{1099}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( \frac{19}{157} a^{7} - \frac{56}{157} a^{6} + \frac{173}{157} a^{5} - \frac{318}{157} a^{4} + \frac{459}{157} a^{3} - \frac{435}{157} a^{2} + \frac{380}{157} a - \frac{12}{157} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{1099}a^{7}-\frac{36}{1099}a^{6}+\frac{100}{1099}a^{5}-\frac{25}{1099}a^{4}-\frac{232}{1099}a^{3}+\frac{1010}{1099}a^{2}-\frac{199}{157}a+\frac{1966}{1099}$, $\frac{36}{1099}a^{7}-\frac{197}{1099}a^{6}+\frac{303}{1099}a^{5}-\frac{900}{1099}a^{4}+\frac{1539}{1099}a^{3}-\frac{2105}{1099}a^{2}+\frac{215}{157}a-\frac{2857}{1099}$, $\frac{5}{157}a^{7}-\frac{23}{157}a^{6}+\frac{29}{157}a^{5}-\frac{125}{157}a^{4}+\frac{96}{157}a^{3}-\frac{288}{157}a^{2}+\frac{100}{157}a-\frac{218}{157}$
|
| |
| Regulator: | \( 11.654352285 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 11.654352285 \cdot 1}{6\cdot\sqrt{64242477}}\cr\approx \mathstrut & 0.37769847029 \end{aligned}\]
Galois group
$C_4\wr C_2$ (as 8T17):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.117.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 sibling: | data not computed |
| Degree 16 siblings: | data not computed |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.8.0.1}{8} }$ | R | ${\href{/padicField/5.8.0.1}{8} }$ | ${\href{/padicField/7.4.0.1}{4} }{,}\,{\href{/padicField/7.1.0.1}{1} }^{4}$ | ${\href{/padicField/11.8.0.1}{8} }$ | R | ${\href{/padicField/17.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.4.0.1}{4} }^{2}$ | ${\href{/padicField/31.4.0.1}{4} }{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.8.0.1}{8} }$ | ${\href{/padicField/43.2.0.1}{2} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.4.2.4a1.2 | $x^{8} + 4 x^{7} + 4 x^{6} + 4 x^{4} + 8 x^{3} + 7$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $$[\ ]_{2}^{4}$$ |
|
\(13\)
| 13.1.4.3a1.4 | $x^{4} + 104$ | $4$ | $1$ | $3$ | $C_4$ | $$[\ ]_{4}$$ |
| 13.4.1.0a1.1 | $x^{4} + 3 x^{2} + 12 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | |
|
\(19\)
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| $\Q_{19}$ | $x + 17$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 19.2.2.2a1.1 | $x^{4} + 36 x^{3} + 328 x^{2} + 91 x + 4$ | $2$ | $2$ | $2$ | $C_4$ | $$[\ ]_{2}^{2}$$ |