Normalized defining polynomial
\( x^{8} - 10 x^{6} + 50 x^{4} - 110 x^{2} + 121 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(642318336=2^{16}\cdot 3^{4}\cdot 11^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{154} a^{6} + \frac{23}{154} a^{4} + \frac{39}{154} a^{2} - \frac{5}{14}$, $\frac{1}{154} a^{7} + \frac{23}{154} a^{5} + \frac{39}{154} a^{3} - \frac{5}{14} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3}{154} a^{6} + \frac{4}{77} a^{4} + \frac{37}{154} a^{2} - \frac{10}{7} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{4}{77} a^{6} - \frac{47}{154} a^{4} + \frac{79}{77} a^{2} - \frac{19}{14} \), \( \frac{3}{154} a^{7} + \frac{1}{77} a^{6} - \frac{4}{77} a^{5} - \frac{31}{154} a^{4} - \frac{37}{154} a^{3} + \frac{39}{77} a^{2} + \frac{10}{7} a - \frac{31}{14} \), \( \frac{3}{77} a^{7} + \frac{9}{154} a^{6} - \frac{93}{154} a^{5} - \frac{12}{77} a^{4} + \frac{271}{77} a^{3} - \frac{111}{154} a^{2} - \frac{135}{14} a + \frac{65}{7} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 64.3625443079 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 8T22):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $C_2^3 : D_4 $ |
| Character table for $C_2^3 : D_4 $ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3_3.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} - 6$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_3_11.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 \cdot 11 $ | $x^{2} - 66$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_11.2t1.1c1 | $1$ | $ 2^{2} \cdot 11 $ | $x^{2} - 11$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_11.2t1.1c1 | $1$ | $ 2^{3} \cdot 11 $ | $x^{2} - 22$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_11.2t1.1c1 | $1$ | $ 3 \cdot 11 $ | $x^{2} - x - 8$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.2e3_3.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_3_11.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 \cdot 11 $ | $x^{2} + 66$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.11.2t1.1c1 | $1$ | $ 11 $ | $x^{2} - x + 3$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.2e3.2t1.2c1 | $1$ | $ 2^{3}$ | $x^{2} + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_11.2t1.2c1 | $1$ | $ 2^{3} \cdot 11 $ | $x^{2} + 22$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_3_11.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 11 $ | $x^{2} + 33$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 4.2e12_3e2_11e2.8t22.5c1 | $4$ | $ 2^{12} \cdot 3^{2} \cdot 11^{2}$ | $x^{8} - 10 x^{6} + 50 x^{4} - 110 x^{2} + 121$ | $C_2^3 : D_4 $ (as 8T22) | $1$ | $0$ |