Normalized defining polynomial
\( x^{8} + 3617 x^{6} + 3704863 x^{4} + 1329681947 x^{2} + 113833013668 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63285718843729333630079120593=401^{6}\cdot 433^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3982.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $401, 433$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{16} a^{4} + \frac{3}{16} a^{2} + \frac{1}{4}$, $\frac{1}{352} a^{5} - \frac{1}{32} a^{4} - \frac{13}{352} a^{3} - \frac{3}{32} a^{2} + \frac{13}{88} a - \frac{1}{8}$, $\frac{1}{309883904} a^{6} + \frac{66389}{3779072} a^{4} - \frac{40854839}{309883904} a^{2} - \frac{1}{2} a - \frac{243993}{640256}$, $\frac{1}{456768874496} a^{7} - \frac{1}{619767808} a^{6} - \frac{878379}{5570352128} a^{5} - \frac{66389}{7558144} a^{4} - \frac{48770098743}{456768874496} a^{3} - \frac{114087113}{619767808} a^{2} + \frac{27287015}{943737344} a - \frac{396263}{1280512}$
Class group and class number
$C_{3}\times C_{45553872}$, which has order $136661616$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{428123}{154941952} a^{6} + \frac{15609815}{1889536} a^{4} + \frac{782860742963}{154941952} a^{2} + \frac{160289882077}{320128} \), \( \frac{1571}{7042816} a^{6} + \frac{50559}{85888} a^{4} + \frac{1503632059}{7042816} a^{2} - \frac{7536490521}{160064} \), \( \frac{1237230996687}{154941952} a^{6} + \frac{21476302290107}{1889536} a^{4} + \frac{720692010895004807}{154941952} a^{2} + \frac{132651895295880009}{320128} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 247134.284786 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4^2:C_4$ (as 8T30):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $(((C_4 \times C_2): C_2):C_2):C_2$ |
| Character table for $(((C_4 \times C_2): C_2):C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{173633}) \), 4.4.12089515894289.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 401 | Data not computed | ||||||
| 433 | Data not computed | ||||||