Normalized defining polynomial
\( x^{8} - 3 x^{7} + 5463 x^{6} + 5095 x^{5} + 15806616 x^{4} + 51182956 x^{3} + 11178650784 x^{2} + 450158768448 x + 9904759495168 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(629221272157210282490919889=73^{6}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2237.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $73, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{192} a^{5} - \frac{1}{32} a^{4} + \frac{5}{64} a^{3} - \frac{3}{32} a^{2} - \frac{3}{8} a + \frac{1}{3}$, $\frac{1}{5148288} a^{6} + \frac{1141}{1287072} a^{5} + \frac{19403}{572032} a^{4} + \frac{106367}{429024} a^{3} - \frac{905}{429024} a^{2} - \frac{139247}{321768} a + \frac{6944}{40221}$, $\frac{1}{101999620454391710291766528} a^{7} + \frac{2074362930451446665}{25499905113597927572941632} a^{6} + \frac{142427450445165137963323}{101999620454391710291766528} a^{5} + \frac{418776452800612086595919}{8499968371199309190980544} a^{4} - \frac{581613102465444017845577}{2833322790399769730326848} a^{3} - \frac{377641333085426507825819}{1593744069599870473308852} a^{2} - \frac{106600863520217113839131}{796872034799935236654426} a - \frac{526737263215243992914}{398436017399967618327213}$
Class group and class number
$C_{30}\times C_{2490}\times C_{2490}$, which has order $186003000$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6477.21000297 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $Q_8$ |
| Character table for $Q_8$ |
Intermediate fields
| \(\Q(\sqrt{29273}) \), \(\Q(\sqrt{73}) \), \(\Q(\sqrt{401}) \), \(\Q(\sqrt{73}, \sqrt{401})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $73$ | 73.4.3.2 | $x^{4} - 1825$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 73.4.3.2 | $x^{4} - 1825$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 401 | Data not computed | ||||||