magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![57122, 0, 35152, 0, 3380, 0, 104, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 104*x^6 + 3380*x^4 + 35152*x^2 + 57122)
gp: K = bnfinit(x^8 + 104*x^6 + 3380*x^4 + 35152*x^2 + 57122, 1)
Normalized defining polynomial
\( x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61334280470528=2^{31}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $52.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(416=2^{5}\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{416}(1,·)$, $\chi_{416}(259,·)$, $\chi_{416}(105,·)$, $\chi_{416}(363,·)$, $\chi_{416}(209,·)$, $\chi_{416}(51,·)$, $\chi_{416}(313,·)$, $\chi_{416}(155,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{13} a^{2}$, $\frac{1}{13} a^{3}$, $\frac{1}{169} a^{4}$, $\frac{1}{169} a^{5}$, $\frac{1}{2197} a^{6}$, $\frac{1}{2197} a^{7}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
$C_{9}\times C_{18}$, which has order $162$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{169} a^{4} + \frac{4}{13} a^{2} + 1 \), \( \frac{1}{13} a^{2} + 1 \), \( \frac{1}{2197} a^{6} + \frac{6}{169} a^{4} + \frac{9}{13} a^{2} + 3 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 19.534360053 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| $13$ | 13.8.4.2 | $x^{8} + 169 x^{4} - 2197 x^{2} + 57122$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e5_13.8t1.1c1 | $1$ | $ 2^{5} \cdot 13 $ | $x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.2e4.4t1.1c1 | $1$ | $ 2^{4}$ | $x^{4} - 4 x^{2} + 2$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.2e5_13.8t1.1c2 | $1$ | $ 2^{5} \cdot 13 $ | $x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e5_13.8t1.1c3 | $1$ | $ 2^{5} \cdot 13 $ | $x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.2e4.4t1.1c2 | $1$ | $ 2^{4}$ | $x^{4} - 4 x^{2} + 2$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.2e5_13.8t1.1c4 | $1$ | $ 2^{5} \cdot 13 $ | $x^{8} + 104 x^{6} + 3380 x^{4} + 35152 x^{2} + 57122$ | $C_8$ (as 8T1) | $0$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.