Normalized defining polynomial
\( x^{8} + 7x^{6} + 18x^{4} + 16x^{2} + 1 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(60886809\)
\(\medspace = 3^{6}\cdot 17^{4}\)
|
| |
| Root discriminant: | \(9.40\) |
| |
| Galois root discriminant: | $3^{3/4}17^{2/3}\approx 15.070935874553902$ | ||
| Ramified primes: |
\(3\), \(17\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}) \) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{7}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ |
| |
| Narrow class group: | Trivial group, which has order $1$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( \frac{1}{2} a^{5} + \frac{5}{2} a^{3} + \frac{7}{2} a + \frac{1}{2} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{1}{2}a^{7}+3a^{5}-\frac{1}{2}a^{4}+\frac{13}{2}a^{3}-\frac{3}{2}a^{2}+\frac{9}{2}a-1$, $\frac{1}{2}a^{7}+3a^{5}+\frac{1}{2}a^{4}+\frac{13}{2}a^{3}+\frac{3}{2}a^{2}+\frac{9}{2}a+1$, $\frac{1}{2}a^{6}+\frac{5}{2}a^{4}+\frac{7}{2}a^{2}+\frac{1}{2}a$
|
| |
| Regulator: | \( 10.543427475 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 10.543427475 \cdot 1}{6\cdot\sqrt{60886809}}\cr\approx \mathstrut & 0.35098489870 \end{aligned}\]
Galois group
| A solvable group of order 24 |
| The 5 conjugacy class representatives for $S_4$ |
| Character table for $S_4$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.2.7803.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 24 |
| Degree 4 sibling: | 4.2.7803.1 |
| Degree 6 siblings: | 6.2.6765201.1, 6.0.2255067.1 |
| Degree 12 siblings: | 12.2.137303833711203.1, 12.0.45767944570401.1 |
| Minimal sibling: | 4.2.7803.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.3.0.1}{3} }^{2}{,}\,{\href{/padicField/7.1.0.1}{1} }^{2}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ | R | ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ | ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.3.0.1}{3} }^{2}{,}\,{\href{/padicField/43.1.0.1}{1} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| 3.2.4.6a1.2 | $x^{8} + 8 x^{7} + 32 x^{6} + 80 x^{5} + 136 x^{4} + 160 x^{3} + 128 x^{2} + 64 x + 19$ | $4$ | $2$ | $6$ | $D_4$ | $$[\ ]_{4}^{2}$$ |
|
\(17\)
| 17.2.1.0a1.1 | $x^{2} + 16 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 17.2.3.4a1.2 | $x^{6} + 48 x^{5} + 777 x^{4} + 4384 x^{3} + 2331 x^{2} + 432 x + 44$ | $3$ | $2$ | $4$ | $S_3$ | $$[\ ]_{3}^{2}$$ |