Normalized defining polynomial
\( x^{8} + 4804 x^{6} + 2044102 x^{4} + 56730436 x^{2} + 141296449 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60467351645799489443637231616=2^{24}\cdot 1201^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3959.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 1201$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{16} a^{4} - \frac{1}{8} a^{2} - \frac{3}{16}$, $\frac{1}{224} a^{5} - \frac{1}{32} a^{4} + \frac{1}{112} a^{3} - \frac{1}{16} a^{2} - \frac{31}{224} a - \frac{1}{32}$, $\frac{1}{5225886848} a^{6} - \frac{13381653}{5225886848} a^{4} - \frac{1}{8} a^{3} + \frac{628377635}{5225886848} a^{2} - \frac{1}{8} a + \frac{13174409}{106650752}$, $\frac{1}{256068455552} a^{7} - \frac{176690617}{256068455552} a^{5} - \frac{1}{32} a^{4} - \frac{19295315973}{256068455552} a^{3} + \frac{1}{16} a^{2} - \frac{496749499}{5225886848} a + \frac{3}{32}$
Class group and class number
$C_{4}\times C_{8}\times C_{8}\times C_{40}\times C_{15840}$, which has order $162201600$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{671}{2612943424} a^{6} + \frac{2903857}{2612943424} a^{4} - \frac{22351963}{2612943424} a^{2} - \frac{1985469}{53325376} \), \( \frac{11919}{2612943424} a^{6} + \frac{56935721}{2612943424} a^{4} + \frac{22820579557}{2612943424} a^{2} + \frac{1225696379}{53325376} \), \( \frac{5}{2181088} a^{6} + \frac{23873}{2181088} a^{4} + \frac{9573171}{2181088} a^{2} + \frac{4898951}{44512} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2043.83946824 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 8T27):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $((C_8 : C_2):C_2):C_2$ |
| Character table for $((C_8 : C_2):C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{2402}) \), 4.4.3547798734848.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.10 | $x^{8} + 16$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 1201 | Data not computed | ||||||