Properties

Label 8.0.6007768511393.1
Degree $8$
Signature $[0, 4]$
Discriminant $11^{4}\cdot 17^{7}$
Root discriminant $39.57$
Ramified primes $11, 17$
Class number $34$
Class group $[34]$
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4591, -3515, 1826, -877, 423, -45, 44, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + 44*x^6 - 45*x^5 + 423*x^4 - 877*x^3 + 1826*x^2 - 3515*x + 4591)
 
gp: K = bnfinit(x^8 - x^7 + 44*x^6 - 45*x^5 + 423*x^4 - 877*x^3 + 1826*x^2 - 3515*x + 4591, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6007768511393=11^{4}\cdot 17^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $39.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $11, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(187=11\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{187}(32,·)$, $\chi_{187}(1,·)$, $\chi_{187}(67,·)$, $\chi_{187}(166,·)$, $\chi_{187}(43,·)$, $\chi_{187}(76,·)$, $\chi_{187}(87,·)$, $\chi_{187}(89,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{38805089011} a^{7} + \frac{10900649393}{38805089011} a^{6} + \frac{5426690670}{38805089011} a^{5} + \frac{14715678118}{38805089011} a^{4} + \frac{1318524127}{38805089011} a^{3} + \frac{55795374}{38805089011} a^{2} - \frac{9679629690}{38805089011} a - \frac{14240135740}{38805089011}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{34}$, which has order $34$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27.6959098582 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8$ (as 8T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 8
The 8 conjugacy class representatives for $C_8$
Character table for $C_8$

Intermediate fields

\(\Q(\sqrt{17}) \), 4.4.4913.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ R ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ R ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }$ ${\href{/LocalNumberField/37.8.0.1}{8} }$ ${\href{/LocalNumberField/41.8.0.1}{8} }$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$11$11.8.4.2$x^{8} - 1331 x^{2} + 29282$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
$17$17.8.7.1$x^{8} - 1377$$8$$1$$7$$C_8$$[\ ]_{8}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.11_17.8t1.1c1$1$ $ 11 \cdot 17 $ $x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591$ $C_8$ (as 8T1) $0$ $-1$
* 1.17.4t1.1c1$1$ $ 17 $ $x^{4} - x^{3} - 6 x^{2} + x + 1$ $C_4$ (as 4T1) $0$ $1$
* 1.11_17.8t1.1c2$1$ $ 11 \cdot 17 $ $x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591$ $C_8$ (as 8T1) $0$ $-1$
* 1.17.2t1.1c1$1$ $ 17 $ $x^{2} - x - 4$ $C_2$ (as 2T1) $1$ $1$
* 1.11_17.8t1.1c3$1$ $ 11 \cdot 17 $ $x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591$ $C_8$ (as 8T1) $0$ $-1$
* 1.17.4t1.1c2$1$ $ 17 $ $x^{4} - x^{3} - 6 x^{2} + x + 1$ $C_4$ (as 4T1) $0$ $1$
* 1.11_17.8t1.1c4$1$ $ 11 \cdot 17 $ $x^{8} - x^{7} + 44 x^{6} - 45 x^{5} + 423 x^{4} - 877 x^{3} + 1826 x^{2} - 3515 x + 4591$ $C_8$ (as 8T1) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.