magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![2, -7, 18, -21, 23, -15, 9, -3, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 9*x^6 - 15*x^5 + 23*x^4 - 21*x^3 + 18*x^2 - 7*x + 2)
gp: K = bnfinit(x^8 - 3*x^7 + 9*x^6 - 15*x^5 + 23*x^4 - 21*x^3 + 18*x^2 - 7*x + 2, 1)
Normalized defining polynomial
\( x^{8} - 3 x^{7} + 9 x^{6} - 15 x^{5} + 23 x^{4} - 21 x^{3} + 18 x^{2} - 7 x + 2 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(594823321=29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a^{3} - a^{2} + 2 a - 1 \), \( a^{7} - 2 a^{6} + 6 a^{5} - 7 a^{4} + 11 a^{3} - 5 a^{2} + 6 a + 1 \), \( a^{6} - 3 a^{5} + 7 a^{4} - 9 a^{3} + 9 a^{2} - 4 a + 1 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28.743665856 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 56 |
| The 8 conjugacy class representatives for $C_2^3:C_7$ |
| Character table for $C_2^3:C_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }$ | ${\href{/LocalNumberField/3.7.0.1}{7} }{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.7.0.1}{7} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.7.0.1}{7} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.7.6.2 | $x^{7} - 29$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.29.7t1.1c1 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.1c2 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.1c3 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.1c4 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.1c5 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| 1.29.7t1.1c6 | $1$ | $ 29 $ | $x^{7} - x^{6} - 12 x^{5} + 7 x^{4} + 28 x^{3} - 14 x^{2} - 9 x - 1$ | $C_7$ (as 7T1) | $0$ | $1$ | |
| * | 7.29e6.8t25.1c1 | $7$ | $ 29^{6}$ | $x^{8} - 3 x^{7} + 9 x^{6} - 15 x^{5} + 23 x^{4} - 21 x^{3} + 18 x^{2} - 7 x + 2$ | $C_2^3:C_7$ (as 8T25) | $1$ | $-1$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.