Properties

Label 8.0.592240896.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{8}\cdot 3^{4}\cdot 13^{4}$
Root discriminant $12.49$
Ramified primes $2, 3, 13$
Class number $2$
Class group $[2]$
Galois group $C_2^3$ (as 8T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![81, 0, -63, 0, 40, 0, -7, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 7*x^6 + 40*x^4 - 63*x^2 + 81)
 
gp: K = bnfinit(x^8 - 7*x^6 + 40*x^4 - 63*x^2 + 81, 1)
 

Normalized defining polynomial

\( x^{8} - 7 x^{6} + 40 x^{4} - 63 x^{2} + 81 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(592240896=2^{8}\cdot 3^{4}\cdot 13^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.49$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(156=2^{2}\cdot 3\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{156}(1,·)$, $\chi_{156}(131,·)$, $\chi_{156}(103,·)$, $\chi_{156}(77,·)$, $\chi_{156}(79,·)$, $\chi_{156}(53,·)$, $\chi_{156}(25,·)$, $\chi_{156}(155,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{360} a^{6} - \frac{4}{9} a^{4} + \frac{1}{9} a^{2} - \frac{7}{40}$, $\frac{1}{1080} a^{7} - \frac{4}{27} a^{5} - \frac{8}{27} a^{3} + \frac{11}{40} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{120} a^{7} + \frac{97}{120} a \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{7}{270} a^{7} + \frac{7}{360} a^{6} - \frac{4}{27} a^{5} - \frac{1}{9} a^{4} + \frac{19}{27} a^{3} + \frac{7}{9} a^{2} - \frac{3}{10} a - \frac{49}{40} \),  \( \frac{1}{40} a^{6} + \frac{17}{40} \),  \( \frac{1}{54} a^{7} + \frac{1}{20} a^{6} - \frac{8}{27} a^{5} + \frac{38}{27} a^{3} - \frac{23}{6} a + \frac{77}{20} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 49.2380320284 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3$ (as 8T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_2^3$
Character table for $C_2^3$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{39})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{-3}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{13})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
2.4.4.1$x^{4} + 8 x^{2} + 4$$2$$2$$4$$C_2^2$$[2]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$13$13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} - 13$$2$$1$$1$$C_2$$[\ ]_{2}$