Normalized defining polynomial
\( x^{8} + 26 x^{6} + 257 x^{4} - 424 x^{2} + 1936 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5861202264064=2^{16}\cdot 7^{4}\cdot 193^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 193$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{28} a^{4} + \frac{13}{28} a^{2} - \frac{3}{7}$, $\frac{1}{56} a^{5} - \frac{1}{56} a^{4} + \frac{13}{56} a^{3} - \frac{13}{56} a^{2} - \frac{3}{14} a + \frac{3}{14}$, $\frac{1}{504} a^{6} - \frac{1}{252} a^{4} + \frac{241}{504} a^{2} - \frac{11}{126}$, $\frac{1}{22176} a^{7} - \frac{1}{1008} a^{6} + \frac{5}{1584} a^{5} + \frac{1}{504} a^{4} - \frac{5375}{22176} a^{3} + \frac{263}{1008} a^{2} + \frac{1159}{5544} a - \frac{115}{252}$
Class group and class number
$C_{2}\times C_{2}\times C_{28}$, which has order $112$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{1232} a^{7} + \frac{13}{616} a^{5} + \frac{213}{1232} a^{3} - \frac{249}{308} a + 1 \), \( \frac{3}{2464} a^{7} - \frac{1}{1008} a^{6} + \frac{39}{1232} a^{5} - \frac{1}{63} a^{4} + \frac{639}{2464} a^{3} + \frac{29}{1008} a^{2} - \frac{747}{616} a + \frac{443}{252} \), \( \frac{1}{11088} a^{7} + \frac{5}{792} a^{5} + \frac{169}{11088} a^{3} - \frac{227}{2772} a \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 66.3757203661 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 8T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{2}) \), 4.0.2420992.2, 4.0.605248.1, \(\Q(\sqrt{2}, \sqrt{7})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
| 2.4.8.2 | $x^{4} + 6 x^{2} + 1$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $193$ | 193.2.1.2 | $x^{2} + 965$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 193.2.1.2 | $x^{2} + 965$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 193.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |