Properties

Label 8.0.568987363143936.85
Degree $8$
Signature $[0, 4]$
Discriminant $2^{8}\cdot 3^{4}\cdot 11^{4}\cdot 37^{4}$
Root discriminant $69.89$
Ramified primes $2, 3, 11, 37$
Class number $1024$
Class group $[4, 8, 32]$
Galois group $C_2^3$ (as 8T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![36864, 0, 7572, 0, 433, 0, 14, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 14*x^6 + 433*x^4 + 7572*x^2 + 36864)
 
gp: K = bnfinit(x^8 + 14*x^6 + 433*x^4 + 7572*x^2 + 36864, 1)
 

Normalized defining polynomial

\( x^{8} + 14 x^{6} + 433 x^{4} + 7572 x^{2} + 36864 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(568987363143936=2^{8}\cdot 3^{4}\cdot 11^{4}\cdot 37^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $69.89$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(4884=2^{2}\cdot 3\cdot 11\cdot 37\)
Dirichlet character group:    $\lbrace$$\chi_{4884}(1,·)$, $\chi_{4884}(4291,·)$, $\chi_{4884}(4069,·)$, $\chi_{4884}(815,·)$, $\chi_{4884}(593,·)$, $\chi_{4884}(4883,·)$, $\chi_{4884}(4663,·)$, $\chi_{4884}(221,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{5} + \frac{1}{16} a^{3} - \frac{1}{4} a$, $\frac{1}{2352} a^{6} + \frac{29}{2352} a^{4} + \frac{5}{42} a^{2} - \frac{12}{49}$, $\frac{1}{56448} a^{7} + \frac{823}{28224} a^{5} - \frac{1241}{8064} a^{3} + \frac{1079}{4704} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{8}\times C_{32}$, which has order $1024$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{43}{18816} a^{7} + \frac{109}{9408} a^{5} + \frac{2413}{2688} a^{3} + \frac{14253}{1568} a - 2 \),  \( \frac{71}{56448} a^{7} + \frac{1}{2352} a^{6} + \frac{221}{28224} a^{5} + \frac{29}{2352} a^{4} + \frac{4121}{8064} a^{3} + \frac{5}{42} a^{2} + \frac{23689}{4704} a + \frac{86}{49} \),  \( \frac{13}{56448} a^{7} + \frac{115}{28224} a^{5} + \frac{1003}{8064} a^{3} + \frac{4619}{4704} a \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 120.723542618 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3$ (as 8T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_2^3$
Character table for $C_2^3$

Intermediate fields

\(\Q(\sqrt{-407}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-1221}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-37}) \), \(\Q(\sqrt{33}, \sqrt{-111})\), \(\Q(\sqrt{3}, \sqrt{-407})\), \(\Q(\sqrt{11}, \sqrt{-37})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\sqrt{33}, \sqrt{-37})\), \(\Q(\sqrt{3}, \sqrt{-37})\), \(\Q(\sqrt{11}, \sqrt{-111})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
2.2.2.2$x^{2} + 2 x - 2$$2$$1$$2$$C_2$$[2]$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$37$37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$
37.2.1.1$x^{2} - 37$$2$$1$$1$$C_2$$[\ ]_{2}$