Normalized defining polynomial
\( x^{8} + 4744 x^{6} + 1036564 x^{4} + 74547216 x^{2} + 1750802850 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(55374869931911176637472833536=2^{31}\cdot 593^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3916.64$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 593$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(18976=2^{5}\cdot 593\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{18976}(1,·)$, $\chi_{18976}(17731,·)$, $\chi_{18976}(12969,·)$, $\chi_{18976}(1387,·)$, $\chi_{18976}(10673,·)$, $\chi_{18976}(14291,·)$, $\chi_{18976}(7193,·)$, $\chi_{18976}(2171,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{45} a^{5} - \frac{1}{9} a^{3} + \frac{4}{45} a$, $\frac{1}{555401205} a^{6} - \frac{13365547}{111080241} a^{4} + \frac{148958224}{555401205} a^{2} - \frac{602498}{1371361}$, $\frac{1}{14995832535} a^{7} + \frac{81279253}{14995832535} a^{5} - \frac{776710451}{14995832535} a^{3} + \frac{75155087}{185133735} a$
Class group and class number
$C_{2}\times C_{12}\times C_{4198704}$, which has order $100768896$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{11745408}{1371361} a^{6} + \frac{55041734718}{1371361} a^{4} + \frac{8991414470520}{1371361} a^{2} + \frac{355532358116447}{1371361} \), \( \frac{2126514467}{185133735} a^{6} + \frac{1973940554218}{37026747} a^{4} + \frac{1190304155657948}{185133735} a^{2} + \frac{268444258406479}{1371361} \), \( \frac{80961083}{61711245} a^{6} + \frac{75813509626}{12342249} a^{4} + \frac{59262461644322}{61711245} a^{2} + \frac{48339123907771}{1371361} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 192696.731634 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{1186}) \), 4.4.427065051136.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.2 | $x^{8} + 24 x^{6} + 4 x^{4} + 16 x^{2} + 34$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 593 | Data not computed | ||||||