Normalized defining polynomial
\( x^{8} - 8 x^{6} + 34 x^{4} - 72 x^{2} + 64 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5473632256=2^{16}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{6} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{7} + \frac{1}{8} a^{3} - \frac{1}{2} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{9}{8} a^{3} + \frac{9}{4} a^{2} - 1 \), \( \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - 2 a^{5} + 3 a^{4} + \frac{27}{4} a^{3} - 11 a^{2} - 7 a + 13 \), \( a^{4} - 4 a^{2} + 13 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170.609444956 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 8T19):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3 : C_4 $ |
| Character table for $C_2^3 : C_4 $ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.2312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.3.4 | $x^{2} + 10$ | $2$ | $1$ | $3$ | $C_2$ | $[3]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.4.11.4 | $x^{4} + 12 x^{2} + 18$ | $4$ | $1$ | $11$ | $C_4$ | $[3, 4]$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e3_17.2t1.1c1 | $1$ | $ 2^{3} \cdot 17 $ | $x^{2} - 34$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e4_17.4t1.4c1 | $1$ | $ 2^{4} \cdot 17 $ | $x^{4} + 68 x^{2} + 578$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e4.4t1.2c1 | $1$ | $ 2^{4}$ | $x^{4} + 4 x^{2} + 2$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e4.4t1.2c2 | $1$ | $ 2^{4}$ | $x^{4} + 4 x^{2} + 2$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 1.2e4_17.4t1.4c2 | $1$ | $ 2^{4} \cdot 17 $ | $x^{4} + 68 x^{2} + 578$ | $C_4$ (as 4T1) | $0$ | $-1$ | |
| 2.2e8_17.4t3.5c1 | $2$ | $ 2^{8} \cdot 17 $ | $x^{4} - 12 x^{2} + 2$ | $D_{4}$ (as 4T3) | $1$ | $2$ | |
| * | 2.2e3_17.4t3.4c1 | $2$ | $ 2^{3} \cdot 17 $ | $x^{4} - x^{3} - 2 x + 4$ | $D_{4}$ (as 4T3) | $1$ | $-2$ |
| * | 4.2e13_17e2.8t21.4c1 | $4$ | $ 2^{13} \cdot 17^{2}$ | $x^{8} - 8 x^{6} + 34 x^{4} - 72 x^{2} + 64$ | $C_2^3 : C_4 $ (as 8T19) | $1$ | $0$ |