Properties

Label 8.0.5323914784321.1
Degree $8$
Signature $[0, 4]$
Discriminant $5.324\times 10^{12}$
Root discriminant \(38.97\)
Ramified primes $7,31$
Class number $1$ (GRH)
Class group trivial (GRH)
Galois group $C_2^3:(C_7: C_3)$ (as 8T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252)
 
gp: K = bnfinit(y^8 + 14*y^6 + 98*y^4 + 280*y^2 - 31*y + 252, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252)
 

\( x^{8} + 14x^{6} + 98x^{4} + 280x^{2} - 31x + 252 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(5323914784321\) \(\medspace = 7^{8}\cdot 31^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(38.97\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{26/21}31^{2/3}\approx 109.78752339060705$
Ramified primes:   \(7\), \(31\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $1$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{79523}a^{7}-\frac{26460}{79523}a^{6}+\frac{11122}{79523}a^{5}+\frac{26503}{79523}a^{4}-\frac{35468}{79523}a^{3}+\frac{32357}{79523}a^{2}-\frac{21322}{79523}a-\frac{35596}{79523}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{6605}{79523}a^{7}+\frac{23254}{79523}a^{6}+\frac{61081}{79523}a^{5}+\frac{260761}{79523}a^{4}+\frac{326710}{79523}a^{3}+\frac{1471098}{79523}a^{2}+\frac{3423}{79523}a+\frac{1787437}{79523}$, $\frac{8366765}{79523}a^{7}+\frac{6714393}{79523}a^{6}+\frac{84025800}{79523}a^{5}+\frac{88085866}{79523}a^{4}+\frac{476401838}{79523}a^{3}+\frac{531696540}{79523}a^{2}+\frac{377425372}{79523}a+\frac{801005045}{79523}$, $\frac{1171983}{79523}a^{7}-\frac{6242940}{79523}a^{6}+\frac{17754579}{79523}a^{5}-\frac{70598591}{79523}a^{4}+\frac{66930267}{79523}a^{3}-\frac{237337142}{79523}a^{2}+\frac{93805042}{79523}a-\frac{212547001}{79523}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 8569.14979186 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 8569.14979186 \cdot 1}{2\cdot\sqrt{5323914784321}}\cr\approx \mathstrut & 2.89408754732 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 + 14*x^6 + 98*x^4 + 280*x^2 - 31*x + 252);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$F_8:C_3$ (as 8T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 168
The 8 conjugacy class representatives for $C_2^3:(C_7: C_3)$
Character table for $C_2^3:(C_7: C_3)$

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.
sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 14 sibling: deg 14
Degree 24 sibling: deg 24
Degree 28 sibling: deg 28
Degree 42 sibling: deg 42
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ ${\href{/padicField/3.7.0.1}{7} }{,}\,{\href{/padicField/3.1.0.1}{1} }$ ${\href{/padicField/5.7.0.1}{7} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ R ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.3.0.1}{3} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{2}$ ${\href{/padicField/17.7.0.1}{7} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ ${\href{/padicField/23.6.0.1}{6} }{,}\,{\href{/padicField/23.2.0.1}{2} }$ ${\href{/padicField/29.7.0.1}{7} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ R ${\href{/padicField/37.6.0.1}{6} }{,}\,{\href{/padicField/37.2.0.1}{2} }$ ${\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ ${\href{/padicField/43.6.0.1}{6} }{,}\,{\href{/padicField/43.2.0.1}{2} }$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.7.0.1}{7} }{,}\,{\href{/padicField/59.1.0.1}{1} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display $\Q_{7}$$x + 4$$1$$1$$0$Trivial$[\ ]$
7.7.8.1$x^{7} + 14 x^{2} + 7$$7$$1$$8$$C_7:C_3$$[4/3]_{3}$
\(31\) Copy content Toggle raw display $\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
$\Q_{31}$$x + 28$$1$$1$$0$Trivial$[\ ]$
31.3.2.3$x^{3} + 155$$3$$1$$2$$C_3$$[\ ]_{3}$
31.3.2.3$x^{3} + 155$$3$$1$$2$$C_3$$[\ ]_{3}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.217.3t1.b.a$1$ $ 7 \cdot 31 $ 3.3.47089.2 $C_3$ (as 3T1) $0$ $1$
1.217.3t1.b.b$1$ $ 7 \cdot 31 $ 3.3.47089.2 $C_3$ (as 3T1) $0$ $1$
3.2307361.7t3.a.a$3$ $ 7^{4} \cdot 31^{2}$ 7.7.5323914784321.1 $C_7:C_3$ (as 7T3) $0$ $3$
3.2307361.7t3.a.b$3$ $ 7^{4} \cdot 31^{2}$ 7.7.5323914784321.1 $C_7:C_3$ (as 7T3) $0$ $3$
* 7.532...321.8t36.a.a$7$ $ 7^{8} \cdot 31^{4}$ 8.0.5323914784321.1 $C_2^3:(C_7: C_3)$ (as 8T36) $1$ $-1$
7.115...657.24t283.a.a$7$ $ 7^{9} \cdot 31^{5}$ 8.0.5323914784321.1 $C_2^3:(C_7: C_3)$ (as 8T36) $0$ $-1$
7.115...657.24t283.a.b$7$ $ 7^{9} \cdot 31^{5}$ 8.0.5323914784321.1 $C_2^3:(C_7: C_3)$ (as 8T36) $0$ $-1$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.