Normalized defining polynomial
\( x^{8} - 10 x^{6} + 62 x^{4} - 140 x^{2} + 100 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(530841600=2^{18}\cdot 3^{4}\cdot 5^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $12.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{70} a^{6} - \frac{4}{35} a^{2} - \frac{1}{7}$, $\frac{1}{70} a^{7} - \frac{4}{35} a^{3} - \frac{1}{7} a$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6}{35} a^{6} - \frac{3}{2} a^{4} + \frac{302}{35} a^{2} - \frac{82}{7} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{6}{35} a^{6} - \frac{3}{2} a^{4} + \frac{302}{35} a^{2} - \frac{75}{7} \), \( \frac{13}{70} a^{7} - \frac{11}{35} a^{6} - \frac{3}{2} a^{5} + \frac{5}{2} a^{4} + \frac{298}{35} a^{3} - \frac{507}{35} a^{2} - \frac{62}{7} a + \frac{113}{7} \), \( \frac{13}{35} a^{7} - \frac{39}{70} a^{6} - 3 a^{5} + \frac{9}{2} a^{4} + \frac{596}{35} a^{3} - \frac{859}{35} a^{2} - \frac{152}{7} a + \frac{214}{7} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 59.8623138231 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$Q_8:C_2^2$ (as 8T22):
| A solvable group of order 32 |
| The 17 conjugacy class representatives for $C_2^3 : D_4 $ |
| Character table for $C_2^3 : D_4 $ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\zeta_{12})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.2e3_3.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} - 6$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3.2t1.2c1 | $1$ | $ 2^{3}$ | $x^{2} + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.3_5.2t1.1c1 | $1$ | $ 3 \cdot 5 $ | $x^{2} - x + 4$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e3_5.2t1.2c1 | $1$ | $ 2^{3} \cdot 5 $ | $x^{2} + 10$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.5.2t1.1c1 | $1$ | $ 5 $ | $x^{2} - x - 1$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_3_5.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 \cdot 5 $ | $x^{2} - 30$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_5.2t1.1c1 | $1$ | $ 2^{3} \cdot 5 $ | $x^{2} - 10$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_3_5.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 5 $ | $x^{2} - 15$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e3_3_5.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 \cdot 5 $ | $x^{2} + 30$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| 1.2e2_5.2t1.1c1 | $1$ | $ 2^{2} \cdot 5 $ | $x^{2} + 5$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.2e2.2t1.1c1 | $1$ | $ 2^{2}$ | $x^{2} + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 1.2e3_3.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 4.2e14_3e2_5e2.8t22.10c1 | $4$ | $ 2^{14} \cdot 3^{2} \cdot 5^{2}$ | $x^{8} - 10 x^{6} + 62 x^{4} - 140 x^{2} + 100$ | $C_2^3 : D_4 $ (as 8T22) | $1$ | $0$ |