Normalized defining polynomial
\( x^{8} - x^{7} + 24662 x^{6} + 1813972 x^{5} + 210268857 x^{4} - 3890248614 x^{3} - 81144892584 x^{2} - 19047412684944 x + 2101736448182448 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5235505260467902422785504364889=313^{6}\cdot 421^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6916.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $313, 421$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(131773=313\cdot 421\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{4} + \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{126} a^{5} - \frac{1}{126} a^{4} + \frac{4}{63} a^{3} - \frac{25}{63} a^{2} + \frac{5}{42} a$, $\frac{1}{342798418116} a^{6} - \frac{42951323}{31163492556} a^{5} - \frac{7711645259}{171399209058} a^{4} - \frac{10680639440}{85699604529} a^{3} - \frac{8050112899}{38088713124} a^{2} - \frac{1022623421}{2720622366} a + \frac{787056}{1962931}$, $\frac{1}{10739520084982021737615288} a^{7} - \frac{9626556949927}{10739520084982021737615288} a^{6} - \frac{1962635655018443189713}{2684880021245505434403822} a^{5} - \frac{59098190935279858046182}{1342440010622752717201911} a^{4} - \frac{207074015874471117392533}{3579840028327340579205096} a^{3} - \frac{4107884655193571139697}{42617143194373102133394} a^{2} + \frac{78384217609539023689}{289912538737231987302} a + \frac{7654632976960201}{488068247032377083}$
Class group and class number
$C_{2}\times C_{2}\times C_{8}\times C_{8}\times C_{4586160}$, which has order $1174056960$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23736.3707289 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4$ (as 8T2):
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_4\times C_2$ |
| Character table for $C_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{421}) \), \(\Q(\sqrt{131773}) \), \(\Q(\sqrt{313}) \), \(\Q(\sqrt{313}, \sqrt{421})\), 4.0.2288122649786917.1, 4.0.2288122649786917.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 313 | Data not computed | ||||||
| 421 | Data not computed | ||||||