Properties

Label 8.0.51575965646730625.6
Degree $8$
Signature $[0, 4]$
Discriminant $5^{4}\cdot 17^{6}\cdot 43^{4}$
Root discriminant $122.76$
Ramified primes $5, 17, 43$
Class number $22960$ (GRH)
Class group $[2, 2, 5740]$ (GRH)
Galois group $C_4\times C_2$ (as 8T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1180136, 111746, 261955, 15666, 12795, 590, 217, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 2*x^7 + 217*x^6 + 590*x^5 + 12795*x^4 + 15666*x^3 + 261955*x^2 + 111746*x + 1180136)
 
gp: K = bnfinit(x^8 - 2*x^7 + 217*x^6 + 590*x^5 + 12795*x^4 + 15666*x^3 + 261955*x^2 + 111746*x + 1180136, 1)
 

Normalized defining polynomial

\( x^{8} - 2 x^{7} + 217 x^{6} + 590 x^{5} + 12795 x^{4} + 15666 x^{3} + 261955 x^{2} + 111746 x + 1180136 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(51575965646730625=5^{4}\cdot 17^{6}\cdot 43^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $122.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 17, 43$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(3655=5\cdot 17\cdot 43\)
Dirichlet character group:    $\lbrace$$\chi_{3655}(1,·)$, $\chi_{3655}(259,·)$, $\chi_{3655}(3396,·)$, $\chi_{3655}(3654,·)$, $\chi_{3655}(1291,·)$, $\chi_{3655}(1891,·)$, $\chi_{3655}(1764,·)$, $\chi_{3655}(2364,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{192} a^{5} - \frac{5}{192} a^{4} - \frac{11}{192} a^{3} - \frac{35}{192} a^{2} + \frac{37}{96} a - \frac{11}{24}$, $\frac{1}{2304} a^{6} - \frac{1}{576} a^{5} + \frac{5}{144} a^{4} - \frac{71}{1152} a^{3} + \frac{109}{768} a^{2} - \frac{55}{1152} a - \frac{83}{288}$, $\frac{1}{130153181184} a^{7} + \frac{2522731}{43384393728} a^{6} - \frac{1879097}{32538295296} a^{5} + \frac{3859622993}{65076590592} a^{4} + \frac{31142727521}{130153181184} a^{3} - \frac{10605679595}{130153181184} a^{2} + \frac{103168471}{1668630528} a - \frac{3009113663}{16269147648}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{5740}$, which has order $22960$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 489.802404202 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4$ (as 8T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_4\times C_2$
Character table for $C_4\times C_2$

Intermediate fields

\(\Q(\sqrt{-215}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-3655}) \), \(\Q(\sqrt{17}, \sqrt{-215})\), 4.4.122825.1, 4.0.9084137.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$17$17.8.6.1$x^{8} - 119 x^{4} + 23409$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$43$43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$
43.2.1.1$x^{2} - 43$$2$$1$$1$$C_2$$[\ ]_{2}$