Normalized defining polynomial
\( x^{8} + 19 x^{6} + 120 x^{4} + 931 x^{2} + 2401 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49991146569=3^{6}\cdot 7^{4}\cdot 13^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{14} a^{5} - \frac{1}{7} a^{3} - \frac{1}{2} a^{2} - \frac{3}{7} a$, $\frac{1}{4312} a^{6} - \frac{16}{539} a^{4} + \frac{211}{539} a^{2} - \frac{29}{88}$, $\frac{1}{60368} a^{7} - \frac{1}{8624} a^{6} - \frac{8}{3773} a^{5} + \frac{8}{539} a^{4} - \frac{703}{3773} a^{3} - \frac{211}{1078} a^{2} - \frac{117}{1232} a + \frac{29}{176}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{15}{15092} a^{7} - \frac{59}{3773} a^{5} - \frac{263}{7546} a^{3} - \frac{137}{308} a + \frac{1}{2} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{2156} a^{7} + \frac{15}{4312} a^{6} + \frac{13}{1078} a^{5} + \frac{59}{1078} a^{4} + \frac{151}{1078} a^{3} + \frac{401}{1078} a^{2} + \frac{127}{308} a + \frac{49}{88} \), \( \frac{37}{15092} a^{7} - \frac{15}{4312} a^{6} + \frac{327}{7546} a^{5} - \frac{59}{1078} a^{4} + \frac{1583}{7546} a^{3} - \frac{401}{1078} a^{2} + \frac{401}{308} a - \frac{401}{88} \), \( \frac{223}{7546} a^{7} + \frac{1898}{3773} a^{5} + \frac{7647}{3773} a^{3} + \frac{503}{22} a \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 240.569294846 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-91}) \), \(\Q(\sqrt{273}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}, \sqrt{-91})\), 4.2.223587.2 x2, 4.0.2457.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.223587.2, 4.0.2457.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 13.4.2.1 | $x^{4} + 39 x^{2} + 676$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.3_7_13.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 13 $ | $x^{2} - x - 68$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.7_13.2t1.1c1 | $1$ | $ 7 \cdot 13 $ | $x^{2} - x + 23$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.3e2_7_13.4t3.6c1 | $2$ | $ 3^{2} \cdot 7 \cdot 13 $ | $x^{8} + 19 x^{6} + 120 x^{4} + 931 x^{2} + 2401$ | $D_4$ (as 8T4) | $1$ | $0$ |