Normalized defining polynomial
\( x^{8} - 2 x^{7} + 5 x^{6} - 11 x^{5} + 4 x^{4} + 14 x^{3} - 7 x^{2} - 7 x + 7 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49401285696=2^{6}\cdot 3^{8}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $21.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{78} a^{7} - \frac{11}{78} a^{6} - \frac{11}{78} a^{4} + \frac{25}{78} a^{3} - \frac{1}{26} a^{2} + \frac{10}{39} a - \frac{31}{78}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{5}{39} a^{7} - \frac{1}{13} a^{6} + \frac{23}{39} a^{4} - \frac{58}{13} a^{3} + \frac{125}{13} a^{2} - \frac{329}{39} a + \frac{48}{13} \), \( \frac{2}{39} a^{7} - \frac{3}{13} a^{6} - \frac{61}{39} a^{4} - \frac{5}{13} a^{3} + \frac{11}{13} a^{2} + \frac{1}{39} a - \frac{12}{13} \), \( \frac{29}{39} a^{7} - \frac{46}{39} a^{6} + 3 a^{5} - \frac{241}{39} a^{4} - \frac{55}{39} a^{3} + \frac{140}{13} a^{2} + \frac{73}{39} a - \frac{236}{39} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 434.560571828 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2:S_4$ (as 8T34):
| A solvable group of order 96 |
| The 10 conjugacy class representatives for $V_4^2:S_3$ |
| Character table for $V_4^2:S_3$ |
Intermediate fields
| \(\Q(\sqrt{-7}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.4.6.7 | $x^{4} + 2 x^{3} + 2 x^{2} + 2$ | $4$ | $1$ | $6$ | $A_4$ | $[2, 2]^{3}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.6.8.5 | $x^{6} + 9 x^{2} + 9$ | $3$ | $2$ | $8$ | $S_3$ | $[2]^{2}$ | |
| $7$ | 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 7.4.3.1 | $x^{4} + 14$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.7.2t1.1c1 | $1$ | $ 7 $ | $x^{2} - x + 2$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 2.3e4_7.3t2.1c1 | $2$ | $ 3^{4} \cdot 7 $ | $x^{3} - 3 x - 5$ | $S_3$ (as 3T2) | $1$ | $0$ | |
| 3.2e6_3e4_7.4t5.1c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7 $ | $x^{4} - 2 x^{3} + 6 x^{2} + 2 x - 1$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e4_7e3.4t5.1c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7^{3}$ | $x^{4} - 56 x + 84$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e4_7e3.4t5.2c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7^{3}$ | $x^{4} - 2 x^{3} - 30 x^{2} - 32 x + 130$ | $S_4$ (as 4T5) | $1$ | $1$ | |
| 3.2e6_3e4_7e2.6t8.6c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7^{2}$ | $x^{4} - 2 x^{3} + 6 x^{2} + 2 x - 1$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_3e4_7e2.6t8.9c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7^{2}$ | $x^{4} - 2 x^{3} - 30 x^{2} - 32 x + 130$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| 3.2e6_3e4_7e2.6t8.8c1 | $3$ | $ 2^{6} \cdot 3^{4} \cdot 7^{2}$ | $x^{4} - 56 x + 84$ | $S_4$ (as 4T5) | $1$ | $-1$ | |
| * | 6.2e6_3e8_7e5.8t34.1c1 | $6$ | $ 2^{6} \cdot 3^{8} \cdot 7^{5}$ | $x^{8} - 2 x^{7} + 5 x^{6} - 11 x^{5} + 4 x^{4} + 14 x^{3} - 7 x^{2} - 7 x + 7$ | $V_4^2:S_3$ (as 8T34) | $1$ | $0$ |