Normalized defining polynomial
\( x^{8} - 4 x^{7} - 10 x^{6} + 44 x^{5} + 49 x^{4} - 176 x^{3} + 668 x^{2} - 572 x + 463 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(49114755108864=2^{12}\cdot 3^{4}\cdot 23^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{6} a^{4} - \frac{1}{3} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{5} + \frac{1}{6} a^{3} - \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{78} a^{6} - \frac{1}{26} a^{5} - \frac{1}{13} a^{4} + \frac{17}{78} a^{3} + \frac{4}{13} a^{2} - \frac{11}{26} a + \frac{23}{78}$, $\frac{1}{22542} a^{7} + \frac{47}{7514} a^{6} - \frac{373}{22542} a^{5} + \frac{869}{22542} a^{4} - \frac{817}{22542} a^{3} + \frac{335}{7514} a^{2} - \frac{1852}{3757} a - \frac{463}{11271}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 445.661771951 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{138}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-6}, \sqrt{-23})\), 4.2.7008192.2 x2, 4.0.292008.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.7008192.2, 4.0.292008.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ |
| 2.4.6.1 | $x^{4} - 6 x^{2} + 4$ | $2$ | $2$ | $6$ | $C_2^2$ | $[3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $23$ | 23.8.6.2 | $x^{8} - 1633 x^{4} + 1270129$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.23.2t1.1c1 | $1$ | $ 23 $ | $x^{2} - x + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.2e3_3_23.2t1.1c1 | $1$ | $ 2^{3} \cdot 3 \cdot 23 $ | $x^{2} - 138$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e3_3.2t1.2c1 | $1$ | $ 2^{3} \cdot 3 $ | $x^{2} + 6$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.2e3_3_23e2.4t3.5c1 | $2$ | $ 2^{3} \cdot 3 \cdot 23^{2}$ | $x^{8} - 4 x^{7} - 10 x^{6} + 44 x^{5} + 49 x^{4} - 176 x^{3} + 668 x^{2} - 572 x + 463$ | $D_4$ (as 8T4) | $1$ | $0$ |