Properties

Label 8.0.48501766991041.21
Degree $8$
Signature $[0, 4]$
Discriminant $4.850\times 10^{13}$
Root discriminant \(51.37\)
Ramified primes $7,13,29$
Class number $16$
Class group [2, 8]
Galois group $A_4\times C_2$ (as 8T13)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484)
 
gp: K = bnfinit(y^8 + 6*y^6 + 53*y^4 - 245*y^2 + 484, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484)
 

\( x^{8} + 6x^{6} + 53x^{4} - 245x^{2} + 484 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(48501766991041\) \(\medspace = 7^{4}\cdot 13^{4}\cdot 29^{4}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(51.37\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}13^{1/2}29^{1/2}\approx 71.05086481765254$
Ramified primes:   \(7\), \(13\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{394}a^{6}+\frac{32}{197}a^{4}-\frac{1}{2}a^{3}-\frac{175}{394}a^{2}-\frac{1}{2}a+\frac{23}{197}$, $\frac{1}{8668}a^{7}-\frac{378}{2167}a^{5}-\frac{1751}{8668}a^{3}-\frac{1}{2}a^{2}-\frac{3303}{8668}a-\frac{1}{2}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{2}\times C_{8}$, which has order $16$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{20}{2167}a^{7}+\frac{3}{394}a^{6}+\frac{98}{2167}a^{5}-\frac{5}{394}a^{4}+\frac{1471}{4334}a^{3}+\frac{33}{197}a^{2}-\frac{5384}{2167}a-\frac{719}{197}$, $\frac{107}{4334}a^{7}+\frac{1}{394}a^{6}+\frac{741}{4334}a^{5}-\frac{133}{394}a^{4}+\frac{3339}{4334}a^{3}-\frac{569}{394}a^{2}-\frac{2367}{4334}a+\frac{614}{197}$, $\frac{6117}{4334}a^{7}+\frac{23763}{2167}a^{5}+\frac{392841}{4334}a^{3}-\frac{952823}{4334}a$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 1100.88642838 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 1100.88642838 \cdot 16}{2\cdot\sqrt{48501766991041}}\cr\approx \mathstrut & 1.97093906628 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^8 + 6*x^6 + 53*x^4 - 245*x^2 + 484);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times A_4$ (as 8T13):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 24
The 8 conjugacy class representatives for $A_4\times C_2$
Character table for $A_4\times C_2$

Intermediate fields

\(\Q(\sqrt{377}) \), 4.0.6964321.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Galois closure: deg 24
Degree 6 sibling: 6.2.905177.1
Degree 12 siblings: deg 12, deg 12
Minimal sibling: 6.2.905177.1

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.3.0.1}{3} }^{2}{,}\,{\href{/padicField/2.1.0.1}{1} }^{2}$ ${\href{/padicField/3.6.0.1}{6} }{,}\,{\href{/padicField/3.2.0.1}{2} }$ ${\href{/padicField/5.6.0.1}{6} }{,}\,{\href{/padicField/5.2.0.1}{2} }$ R ${\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }^{2}$ R ${\href{/padicField/17.6.0.1}{6} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ ${\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.3.0.1}{3} }^{2}{,}\,{\href{/padicField/23.1.0.1}{1} }^{2}$ R ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.3.0.1}{3} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{4}$ ${\href{/padicField/43.2.0.1}{2} }^{4}$ ${\href{/padicField/47.3.0.1}{3} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{2}$ ${\href{/padicField/53.3.0.1}{3} }^{2}{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ ${\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.2.0.1}{2} }$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display 7.2.0.1$x^{2} + 6 x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
7.6.4.3$x^{6} + 18 x^{5} + 117 x^{4} + 338 x^{3} + 477 x^{2} + 792 x + 1210$$3$$2$$4$$C_6$$[\ ]_{3}^{2}$
\(13\) Copy content Toggle raw display 13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.1$x^{2} + 13$$2$$1$$1$$C_2$$[\ ]_{2}$
\(29\) Copy content Toggle raw display 29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$