magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -2, 1, 0, 1, -1, 0, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^5 + x^4 + x^2 - 2*x + 1)
gp: K = bnfinit(x^8 - x^5 + x^4 + x^2 - 2*x + 1, 1)
Normalized defining polynomial
\( x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
gp: K.pol
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4807593=3^{4}\cdot 7\cdot 61\cdot 139\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 61, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$
magma: IntegralBasis(K);
sage: K.integral_basis()
gp: K.zk
Class group and class number
Trivial group, which has order $1$
magma: ClassGroup(K);
sage: K.class_group().invariants()
gp: K.clgp
Unit group
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -a^{7} - a^{6} - a^{5} - a + 1 \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( a \), \( a^{6} + a^{5} + a^{4} - a + 1 \), \( a^{6} + a^{5} + a^{4} + a^{2} + 1 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2.51445839838 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_4\wr C_2$ (as 8T47):
magma: GaloisGroup(K);
sage: K.galois_group(type='pari')
gp: polgalois(K.pol)
| A solvable group of order 1152 |
| The 20 conjugacy class representatives for $S_4\wr C_2$ |
| Character table for $S_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 18 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| $7$ | 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.2 | $x^{2} + 122$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| $139$ | $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{139}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 139.2.1.2 | $x^{2} + 556$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 139.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| 1.7_61_139.2t1.1c1 | $1$ | $ 7 \cdot 61 \cdot 139 $ | $x^{2} - x - 14838$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.3_7_61_139.2t1.1c1 | $1$ | $ 3 \cdot 7 \cdot 61 \cdot 139 $ | $x^{2} - x + 44515$ | $C_2$ (as 2T1) | $1$ | $-1$ | |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| 2.3_7_61_139.4t3.1c1 | $2$ | $ 3 \cdot 7 \cdot 61 \cdot 139 $ | $x^{4} - 101 x^{2} - 12288$ | $D_{4}$ (as 4T3) | $1$ | $0$ | |
| 4.3e3_7e2_61e2_139e2.12t34.1c1 | $4$ | $ 3^{3} \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $-2$ | |
| 4.3e2_7e3_61e3_139e3.12t34.1c1 | $4$ | $ 3^{2} \cdot 7^{3} \cdot 61^{3} \cdot 139^{3}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 4.3_7e2_61e2_139e2.6t13.1c1 | $4$ | $ 3 \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $2$ | |
| 4.3e2_7_61_139.6t13.1c1 | $4$ | $ 3^{2} \cdot 7 \cdot 61 \cdot 139 $ | $x^{6} - 96 x^{4} - 27 x^{3} + 2304 x^{2} + 1296 x - 14656$ | $C_3^2:D_4$ (as 6T13) | $1$ | $0$ | |
| 6.3e3_7e4_61e4_139e4.12t201.1c1 | $6$ | $ 3^{3} \cdot 7^{4} \cdot 61^{4} \cdot 139^{4}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ | |
| 6.3e3_7e5_61e5_139e5.12t202.1c1 | $6$ | $ 3^{3} \cdot 7^{5} \cdot 61^{5} \cdot 139^{5}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ | |
| * | 6.3e3_7_61_139.8t47.1c1 | $6$ | $ 3^{3} \cdot 7 \cdot 61 \cdot 139 $ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ |
| 6.3e3_7e2_61e2_139e2.12t200.1c1 | $6$ | $ 3^{3} \cdot 7^{2} \cdot 61^{2} \cdot 139^{2}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ | |
| 9.3e3_7e3_61e3_139e3.16t1294.1c1 | $9$ | $ 3^{3} \cdot 7^{3} \cdot 61^{3} \cdot 139^{3}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $3$ | |
| 9.3e3_7e6_61e6_139e6.18t272.1c1 | $9$ | $ 3^{3} \cdot 7^{6} \cdot 61^{6} \cdot 139^{6}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $3$ | |
| 9.3e6_7e6_61e6_139e6.18t273.1c1 | $9$ | $ 3^{6} \cdot 7^{6} \cdot 61^{6} \cdot 139^{6}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $-3$ | |
| 9.3e6_7e3_61e3_139e3.18t274.1c1 | $9$ | $ 3^{6} \cdot 7^{3} \cdot 61^{3} \cdot 139^{3}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $-3$ | |
| 12.3e6_7e7_61e7_139e7.36t1944.1c1 | $12$ | $ 3^{6} \cdot 7^{7} \cdot 61^{7} \cdot 139^{7}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ | |
| 12.3e6_7e5_61e5_139e5.24t2821.1c1 | $12$ | $ 3^{6} \cdot 7^{5} \cdot 61^{5} \cdot 139^{5}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ | |
| 18.3e9_7e9_61e9_139e9.36t1758.1c1 | $18$ | $ 3^{9} \cdot 7^{9} \cdot 61^{9} \cdot 139^{9}$ | $x^{8} - x^{5} + x^{4} + x^{2} - 2 x + 1$ | $S_4\wr C_2$ (as 8T47) | $1$ | $0$ |
Data is given for all irreducible
representations of the Galois group for the Galois closure
of this field. Those marked with * are summands in the
permutation representation coming from this field. Representations
which appear with multiplicity greater than one are indicated
by exponents on the *.