Properties

Label 8.0.478601727789...4857.1
Degree $8$
Signature $[0, 4]$
Discriminant $109^{6}\cdot 433^{7}$
Root discriminant $6839.07$
Ramified primes $109, 433$
Class number $1065865744$ (GRH)
Class group $[2, 2, 266466436]$ (GRH)
Galois group $C_8$ (as 8T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![108461951237376, -2233056627168, 33899521688, 1125604804, -27870482, -421803, 5873, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + 5873*x^6 - 421803*x^5 - 27870482*x^4 + 1125604804*x^3 + 33899521688*x^2 - 2233056627168*x + 108461951237376)
 
gp: K = bnfinit(x^8 - x^7 + 5873*x^6 - 421803*x^5 - 27870482*x^4 + 1125604804*x^3 + 33899521688*x^2 - 2233056627168*x + 108461951237376, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + 5873 x^{6} - 421803 x^{5} - 27870482 x^{4} + 1125604804 x^{3} + 33899521688 x^{2} - 2233056627168 x + 108461951237376 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(4786017277896748306090327094857=109^{6}\cdot 433^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $6839.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $109, 433$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(47197=109\cdot 433\)
Dirichlet character group:    not computed
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{24} a^{4} - \frac{1}{12} a^{3} - \frac{1}{24} a^{2} + \frac{1}{12} a$, $\frac{1}{216} a^{5} + \frac{1}{108} a^{4} - \frac{1}{216} a^{3} + \frac{5}{108} a^{2} - \frac{7}{18} a$, $\frac{1}{6671808} a^{6} - \frac{2117}{6671808} a^{5} - \frac{8383}{741312} a^{4} + \frac{124853}{6671808} a^{3} - \frac{415241}{3335904} a^{2} + \frac{39563}{277992} a + \frac{92}{351}$, $\frac{1}{931236401633851423873990656} a^{7} + \frac{10236914756521575667}{310412133877950474624663552} a^{6} + \frac{1938071531018346002368955}{931236401633851423873990656} a^{5} - \frac{12213563976399109071645805}{931236401633851423873990656} a^{4} - \frac{1744327048886197409774705}{25867677823162539552055296} a^{3} + \frac{5200675094228166331678567}{232809100408462855968497664} a^{2} + \frac{1143929599646666327843357}{19400758367371904664041472} a + \frac{9940022484128723393879}{24495907029509980636416}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{266466436}$, which has order $1065865744$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11948612.177 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_8$ (as 8T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 8
The 8 conjugacy class representatives for $C_8$
Character table for $C_8$

Intermediate fields

\(\Q(\sqrt{433}) \), 4.4.964532098297.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/5.8.0.1}{8} }$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.8.0.1}{8} }$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.8.0.1}{8} }$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }$ ${\href{/LocalNumberField/47.8.0.1}{8} }$ ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$109$109.4.3.1$x^{4} - 109$$4$$1$$3$$C_4$$[\ ]_{4}$
109.4.3.1$x^{4} - 109$$4$$1$$3$$C_4$$[\ ]_{4}$
433Data not computed