Normalized defining polynomial
\( x^{8} - x^{7} + 5873 x^{6} - 421803 x^{5} - 27870482 x^{4} + 1125604804 x^{3} + 33899521688 x^{2} - 2233056627168 x + 108461951237376 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(4786017277896748306090327094857=109^{6}\cdot 433^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $6839.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $109, 433$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(47197=109\cdot 433\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{3} - \frac{1}{6} a$, $\frac{1}{24} a^{4} - \frac{1}{12} a^{3} - \frac{1}{24} a^{2} + \frac{1}{12} a$, $\frac{1}{216} a^{5} + \frac{1}{108} a^{4} - \frac{1}{216} a^{3} + \frac{5}{108} a^{2} - \frac{7}{18} a$, $\frac{1}{6671808} a^{6} - \frac{2117}{6671808} a^{5} - \frac{8383}{741312} a^{4} + \frac{124853}{6671808} a^{3} - \frac{415241}{3335904} a^{2} + \frac{39563}{277992} a + \frac{92}{351}$, $\frac{1}{931236401633851423873990656} a^{7} + \frac{10236914756521575667}{310412133877950474624663552} a^{6} + \frac{1938071531018346002368955}{931236401633851423873990656} a^{5} - \frac{12213563976399109071645805}{931236401633851423873990656} a^{4} - \frac{1744327048886197409774705}{25867677823162539552055296} a^{3} + \frac{5200675094228166331678567}{232809100408462855968497664} a^{2} + \frac{1143929599646666327843357}{19400758367371904664041472} a + \frac{9940022484128723393879}{24495907029509980636416}$
Class group and class number
$C_{2}\times C_{2}\times C_{266466436}$, which has order $1065865744$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11948612.177 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{433}) \), 4.4.964532098297.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $109$ | 109.4.3.1 | $x^{4} - 109$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 109.4.3.1 | $x^{4} - 109$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 433 | Data not computed | ||||||