Properties

Label 8.0.464168143996...2897.1
Degree $8$
Signature $[0, 4]$
Discriminant $313^{6}\cdot 337^{7}$
Root discriminant $12{,}115.31$
Ramified primes $313, 337$
Class number $13448275488$ (GRH)
Class group $[2, 6, 1120689624]$ (GRH)
Galois group $QD_{16}$ (as 8T8)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![697479143507712, 45581396588928, 1246746053196, 16594676901, 163692817, 2260830, 19234, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 3*x^7 + 19234*x^6 + 2260830*x^5 + 163692817*x^4 + 16594676901*x^3 + 1246746053196*x^2 + 45581396588928*x + 697479143507712)
 
gp: K = bnfinit(x^8 - 3*x^7 + 19234*x^6 + 2260830*x^5 + 163692817*x^4 + 16594676901*x^3 + 1246746053196*x^2 + 45581396588928*x + 697479143507712, 1)
 

Normalized defining polynomial

\( x^{8} - 3 x^{7} + 19234 x^{6} + 2260830 x^{5} + 163692817 x^{4} + 16594676901 x^{3} + 1246746053196 x^{2} + 45581396588928 x + 697479143507712 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(464168143996753120817910253432897=313^{6}\cdot 337^{7}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12{,}115.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $313, 337$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{3} - \frac{1}{12} a$, $\frac{1}{24} a^{4} - \frac{1}{24} a^{2}$, $\frac{1}{48} a^{5} - \frac{1}{48} a^{4} - \frac{1}{48} a^{3} + \frac{1}{48} a^{2}$, $\frac{1}{3456} a^{6} - \frac{1}{96} a^{5} + \frac{23}{1728} a^{4} - \frac{1}{72} a^{3} - \frac{335}{3456} a^{2} - \frac{89}{288} a - \frac{1}{4}$, $\frac{1}{35666526483660612622151981339136} a^{7} - \frac{568159313497659991446553241}{11888842161220204207383993779712} a^{6} + \frac{118331428508503651004131834853}{17833263241830306311075990669568} a^{5} + \frac{12391826653881425161681999279}{1981473693536700701230665629952} a^{4} + \frac{1771410516668535159163055041}{35666526483660612622151981339136} a^{3} - \frac{404581442741162475593725672033}{11888842161220204207383993779712} a^{2} + \frac{406664512910490404357444507413}{990736846768350350615332814976} a - \frac{403896308939432610720575871}{1528914886988194985517488912}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{6}\times C_{1120689624}$, which has order $13448275488$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 4401799.02752 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$SD_{16}$ (as 8T8):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 16
The 7 conjugacy class representatives for $QD_{16}$
Character table for $QD_{16}$

Intermediate fields

\(\Q(\sqrt{105481}) \), 4.4.3749543338657.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/29.8.0.1}{8} }$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
313Data not computed
337Data not computed