Normalized defining polynomial
\( x^{8} - 7 x^{6} + 911 x^{4} + 35635 x^{2} + 562500 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45799819979655625=5^{4}\cdot 13^{4}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $120.95$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 13, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{48} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} - \frac{3}{16} a^{2} + \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{176640} a^{6} - \frac{1797}{29440} a^{4} + \frac{36161}{176640} a^{2} - \frac{1}{2} a - \frac{327}{2944}$, $\frac{1}{8832000} a^{7} - \frac{1}{353280} a^{6} - \frac{42191}{4416000} a^{5} + \frac{1797}{58880} a^{4} - \frac{1067839}{8832000} a^{3} + \frac{52159}{353280} a^{2} + \frac{185963}{441600} a - \frac{2617}{5888}$
Class group and class number
$C_{43}\times C_{344}$, which has order $14792$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{23000} a^{7} - \frac{73}{34500} a^{5} + \frac{1661}{23000} a^{3} + \frac{932}{1725} a - 8 \), \( \frac{11}{19200} a^{7} - \frac{101}{9600} a^{5} + \frac{13771}{19200} a^{3} + \frac{4793}{960} a - 68 \), \( \frac{54359}{4416000} a^{7} - \frac{309}{11776} a^{6} - \frac{273523}{736000} a^{5} - \frac{1957}{5888} a^{4} + \frac{76731799}{4416000} a^{3} + \frac{45835}{11776} a^{2} + \frac{9207839}{73600} a - \frac{6206467}{2944} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3158.39965897 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{65}) \), \(\Q(\sqrt{481}) \), \(\Q(\sqrt{185}) \), \(\Q(\sqrt{65}, \sqrt{185})\), 4.0.42801785.2 x2, 4.0.16462225.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $37$ | 37.4.3.4 | $x^{4} + 296$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.4 | $x^{4} + 296$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |