Properties

Label 8.0.45799819979655625.7
Degree $8$
Signature $[0, 4]$
Discriminant $5^{4}\cdot 13^{4}\cdot 37^{6}$
Root discriminant $120.95$
Ramified primes $5, 13, 37$
Class number $14792$ (GRH)
Class group $[43, 344]$ (GRH)
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![562500, 0, 35635, 0, 911, 0, -7, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 7*x^6 + 911*x^4 + 35635*x^2 + 562500)
 
gp: K = bnfinit(x^8 - 7*x^6 + 911*x^4 + 35635*x^2 + 562500, 1)
 

Normalized defining polynomial

\( x^{8} - 7 x^{6} + 911 x^{4} + 35635 x^{2} + 562500 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(45799819979655625=5^{4}\cdot 13^{4}\cdot 37^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $120.95$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 13, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{3} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{4} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{48} a^{5} - \frac{1}{16} a^{4} + \frac{1}{16} a^{3} - \frac{3}{16} a^{2} + \frac{5}{12} a - \frac{1}{4}$, $\frac{1}{176640} a^{6} - \frac{1797}{29440} a^{4} + \frac{36161}{176640} a^{2} - \frac{1}{2} a - \frac{327}{2944}$, $\frac{1}{8832000} a^{7} - \frac{1}{353280} a^{6} - \frac{42191}{4416000} a^{5} + \frac{1797}{58880} a^{4} - \frac{1067839}{8832000} a^{3} + \frac{52159}{353280} a^{2} + \frac{185963}{441600} a - \frac{2617}{5888}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{43}\times C_{344}$, which has order $14792$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{23000} a^{7} - \frac{73}{34500} a^{5} + \frac{1661}{23000} a^{3} + \frac{932}{1725} a - 8 \),  \( \frac{11}{19200} a^{7} - \frac{101}{9600} a^{5} + \frac{13771}{19200} a^{3} + \frac{4793}{960} a - 68 \),  \( \frac{54359}{4416000} a^{7} - \frac{309}{11776} a^{6} - \frac{273523}{736000} a^{5} - \frac{1957}{5888} a^{4} + \frac{76731799}{4416000} a^{3} + \frac{45835}{11776} a^{2} + \frac{9207839}{73600} a - \frac{6206467}{2944} \) (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 3158.39965897 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{65}) \), \(\Q(\sqrt{481}) \), \(\Q(\sqrt{185}) \), \(\Q(\sqrt{65}, \sqrt{185})\), 4.0.42801785.2 x2, 4.0.16462225.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
5.2.1.2$x^{2} + 10$$2$$1$$1$$C_2$$[\ ]_{2}$
$13$13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
13.2.1.2$x^{2} + 26$$2$$1$$1$$C_2$$[\ ]_{2}$
$37$37.4.3.4$x^{4} + 296$$4$$1$$3$$C_4$$[\ ]_{4}$
37.4.3.4$x^{4} + 296$$4$$1$$3$$C_4$$[\ ]_{4}$