Normalized defining polynomial
\( x^{8} - x^{7} + 11169 x^{6} + 45771 x^{5} + 69712610 x^{4} + 203660475 x^{3} + 132729039125 x^{2} - 172383112500 x + 273542293828125 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(45497113695130083887456829001=149^{6}\cdot 401^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3821.62$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $149, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(59749=149\cdot 401\) | ||
| Dirichlet character group: | not computed | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{15} a^{4} - \frac{1}{15} a^{3} - \frac{2}{5} a^{2} - \frac{4}{15} a$, $\frac{1}{525} a^{5} - \frac{16}{525} a^{4} - \frac{1}{25} a^{3} - \frac{139}{525} a^{2} + \frac{1}{7} a$, $\frac{1}{15750} a^{6} - \frac{1}{2625} a^{5} - \frac{38}{7875} a^{4} - \frac{349}{15750} a^{3} + \frac{451}{3150} a^{2} + \frac{101}{210} a - \frac{1}{2}$, $\frac{1}{11095354767566998884809573606250} a^{7} - \frac{94028293234380056708296451}{11095354767566998884809573606250} a^{6} + \frac{5109327341573837622584491747}{5547677383783499442404786803125} a^{5} + \frac{35863211205524258899419677971}{11095354767566998884809573606250} a^{4} + \frac{14391869976425073364372288441}{1109535476756699888480957360625} a^{3} - \frac{10231594207096287777857378963}{221907095351339977696191472125} a^{2} + \frac{2122219599205601118625090813}{14793806356755998513079431475} a - \frac{343395196749587123866493}{1943357156880919344903702}$
Class group and class number
$C_{6}\times C_{270}\times C_{188190}$, which has order $304867800$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6617.93570943 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4$ (as 8T2):
| An abelian group of order 8 |
| The 8 conjugacy class representatives for $C_4\times C_2$ |
| Character table for $C_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{149}) \), \(\Q(\sqrt{59749}) \), \(\Q(\sqrt{401}) \), \(\Q(\sqrt{149}, \sqrt{401})\), 4.0.213300524366749.2, 4.0.213300524366749.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $149$ | 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 149.4.3.2 | $x^{4} - 596$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 401 | Data not computed | ||||||