Properties

Label 8.0.444638964023296.21
Degree $8$
Signature $[0, 4]$
Discriminant $2^{16}\cdot 7^{4}\cdot 41^{4}$
Root discriminant $67.76$
Ramified primes $2, 7, 41$
Class number $1344$
Class group $[2, 4, 168]$
Galois group $C_2^3$ (as 8T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![12996, 0, 2492, 0, 669, 0, 42, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 42*x^6 + 669*x^4 + 2492*x^2 + 12996)
 
gp: K = bnfinit(x^8 + 42*x^6 + 669*x^4 + 2492*x^2 + 12996, 1)
 

Normalized defining polynomial

\( x^{8} + 42 x^{6} + 669 x^{4} + 2492 x^{2} + 12996 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(444638964023296=2^{16}\cdot 7^{4}\cdot 41^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $67.76$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 7, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(2296=2^{3}\cdot 7\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{2296}(1,·)$, $\chi_{2296}(1723,·)$, $\chi_{2296}(2213,·)$, $\chi_{2296}(1639,·)$, $\chi_{2296}(1805,·)$, $\chi_{2296}(1231,·)$, $\chi_{2296}(1721,·)$, $\chi_{2296}(1147,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{4} - \frac{1}{6} a^{2}$, $\frac{1}{12} a^{5} - \frac{1}{12} a^{4} + \frac{1}{12} a^{3} - \frac{5}{12} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{7920} a^{6} + \frac{28}{495} a^{4} - \frac{1}{6} a^{3} - \frac{3563}{7920} a^{2} + \frac{1}{6} a + \frac{73}{440}$, $\frac{1}{150480} a^{7} - \frac{769}{18810} a^{5} - \frac{15443}{150480} a^{3} + \frac{8579}{25080} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{168}$, which has order $1344$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{1}{25080} a^{7} - \frac{1}{1584} a^{6} + \frac{59}{12540} a^{5} - \frac{13}{396} a^{4} + \frac{3367}{25080} a^{3} - \frac{793}{1584} a^{2} + \frac{4399}{4180} a - \frac{117}{88} \),  \( \frac{1}{360} a^{6} + \frac{7}{90} a^{4} + \frac{97}{360} a^{2} - \frac{327}{20} \),  \( \frac{1}{3135} a^{7} - \frac{4}{495} a^{6} + \frac{118}{3135} a^{5} - \frac{142}{495} a^{4} + \frac{3367}{3135} a^{3} - \frac{2248}{495} a^{2} + \frac{8798}{1045} a - \frac{639}{55} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 451.659027468 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3$ (as 8T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 8
The 8 conjugacy class representatives for $C_2^3$
Character table for $C_2^3$

Intermediate fields

\(\Q(\sqrt{-287}) \), \(\Q(\sqrt{574}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-41}) \), \(\Q(\sqrt{82}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-2}, \sqrt{-287})\), \(\Q(\sqrt{7}, \sqrt{-41})\), \(\Q(\sqrt{-14}, \sqrt{82})\), \(\Q(\sqrt{7}, \sqrt{82})\), \(\Q(\sqrt{-14}, \sqrt{-41})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{-41})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$41$41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
41.4.2.1$x^{4} + 943 x^{2} + 242064$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$