Normalized defining polynomial
\( x^{8} - 46x^{6} + 721x^{4} - 4224x^{2} + 9216 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(43057910016\)
\(\medspace = 2^{8}\cdot 3^{4}\cdot 11^{2}\cdot 131^{2}\)
|
| |
| Root discriminant: | \(21.34\) |
| |
| Galois root discriminant: | $2\cdot 3^{1/2}11^{1/2}131^{1/2}\approx 131.4990494262221$ | ||
| Ramified primes: |
\(2\), \(3\), \(11\), \(131\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$: | $C_2^2$ |
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
| Reflex fields: | \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-1}) \), 4.0.24917772.2$^{2}$, 8.0.43057910016.1$^{4}$ | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{4}a^{3}+\frac{1}{4}a$, $\frac{1}{16}a^{4}-\frac{7}{16}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{5}+\frac{1}{16}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{960}a^{6}+\frac{13}{480}a^{4}-\frac{1}{8}a^{3}+\frac{313}{960}a^{2}-\frac{1}{8}a-\frac{3}{10}$, $\frac{1}{23040}a^{7}+\frac{313}{11520}a^{5}+\frac{913}{23040}a^{3}-\frac{1}{2}a^{2}+\frac{47}{240}a-\frac{1}{2}$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $2$ |
Class group and class number
| Ideal class group: | $C_{11}$, which has order $11$ |
| |
| Narrow class group: | $C_{11}$, which has order $11$ |
| |
| Relative class number: | $11$ |
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{13}{23040} a^{7} + \frac{1}{960} a^{6} + \frac{251}{11520} a^{5} - \frac{17}{480} a^{4} - \frac{6109}{23040} a^{3} + \frac{253}{960} a^{2} + \frac{199}{240} a + \frac{1}{5} \)
(order $12$)
|
| |
| Fundamental units: |
$\frac{13}{23040}a^{7}-\frac{1}{960}a^{6}-\frac{251}{11520}a^{5}+\frac{17}{480}a^{4}+\frac{6109}{23040}a^{3}-\frac{253}{960}a^{2}-\frac{199}{240}a-\frac{6}{5}$, $\frac{7}{4608}a^{7}+\frac{1}{160}a^{6}-\frac{113}{2304}a^{5}-\frac{17}{80}a^{4}+\frac{1783}{4608}a^{3}+\frac{333}{160}a^{2}+\frac{41}{48}a-\frac{23}{10}$, $\frac{97}{23040}a^{7}-\frac{17}{960}a^{6}-\frac{2039}{11520}a^{5}+\frac{319}{480}a^{4}+\frac{49681}{23040}a^{3}-\frac{7121}{960}a^{2}-\frac{1051}{240}a+\frac{93}{5}$
|
| |
| Regulator: | \( 86.2600668707 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 86.2600668707 \cdot 11}{12\cdot\sqrt{43057910016}}\cr\approx \mathstrut & 0.593901237377 \end{aligned}\]
Galois group
$C_2\times D_4$ (as 8T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), 4.4.207504.1, 4.0.207504.1, \(\Q(\zeta_{12})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 16 |
| Degree 8 siblings: | deg 8, deg 8, deg 8 |
| Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.2.0.1}{2} }^{4}$ | ${\href{/padicField/7.4.0.1}{4} }^{2}$ | R | ${\href{/padicField/13.2.0.1}{2} }^{2}{,}\,{\href{/padicField/13.1.0.1}{1} }^{4}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.2.0.1}{2} }^{4}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.4.0.1}{4} }^{2}$ | ${\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.2.0.1}{2} }^{4}$ | ${\href{/padicField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ |
| 2.2.2.4a1.1 | $x^{4} + 2 x^{3} + 5 x^{2} + 4 x + 5$ | $2$ | $2$ | $4$ | $C_2^2$ | $$[2]^{2}$$ | |
|
\(3\)
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 3.2.2.2a1.2 | $x^{4} + 4 x^{3} + 8 x^{2} + 8 x + 7$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(11\)
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 11.2.1.0a1.1 | $x^{2} + 7 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 11.2.2.2a1.2 | $x^{4} + 14 x^{3} + 53 x^{2} + 28 x + 15$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ | |
|
\(131\)
| 131.2.1.0a1.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ |
| 131.2.1.0a1.1 | $x^{2} + 127 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | |
| 131.2.2.2a1.2 | $x^{4} + 254 x^{3} + 16133 x^{2} + 508 x + 135$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |