Properties

Label 8.0.430146603940...6769.1
Degree $8$
Signature $[0, 4]$
Discriminant $241^{7}\cdot 457^{6}$
Root discriminant $12{,}000.58$
Ramified primes $241, 457$
Class number $3105253760$ (GRH)
Class group $[2, 2, 2, 388156720]$ (GRH)
Galois group $C_4\wr C_2$ (as 8T17)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![567491024552352, -28534270584992, 185254438802, 6107597937, 4620141, -1195635, 20139, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - x^7 + 20139*x^6 - 1195635*x^5 + 4620141*x^4 + 6107597937*x^3 + 185254438802*x^2 - 28534270584992*x + 567491024552352)
 
gp: K = bnfinit(x^8 - x^7 + 20139*x^6 - 1195635*x^5 + 4620141*x^4 + 6107597937*x^3 + 185254438802*x^2 - 28534270584992*x + 567491024552352, 1)
 

Normalized defining polynomial

\( x^{8} - x^{7} + 20139 x^{6} - 1195635 x^{5} + 4620141 x^{4} + 6107597937 x^{3} + 185254438802 x^{2} - 28534270584992 x + 567491024552352 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(430146603940909544066530986816769=241^{7}\cdot 457^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12{,}000.58$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $241, 457$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{6} a^{4} + \frac{1}{3} a^{2} - \frac{1}{2} a$, $\frac{1}{144} a^{5} + \frac{1}{24} a^{4} - \frac{7}{72} a^{3} - \frac{1}{48} a^{2} + \frac{29}{72} a + \frac{1}{6}$, $\frac{1}{127440} a^{6} - \frac{7}{2160} a^{5} + \frac{331}{7965} a^{4} - \frac{1525}{25488} a^{3} + \frac{50227}{127440} a^{2} - \frac{18571}{63720} a + \frac{547}{5310}$, $\frac{1}{209073189431525897556335593823040} a^{7} - \frac{40139556659706196393479439}{69691063143841965852111864607680} a^{6} + \frac{98576302628690897789563145401}{69691063143841965852111864607680} a^{5} + \frac{1045505241935929699016392085809}{23230354381280655284037288202560} a^{4} - \frac{905613898258950586022229138127}{23230354381280655284037288202560} a^{3} - \frac{1036653964348726748529650990387}{4646070876256131056807457640512} a^{2} + \frac{44479906535192630032155127946083}{104536594715762948778167796911520} a + \frac{2039624714883823136374887936407}{8711382892980245731513983075960}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{388156720}$, which has order $3105253760$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 718850.909502 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\wr C_2$ (as 8T17):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 14 conjugacy class representatives for $C_4\wr C_2$
Character table for $C_4\wr C_2$

Intermediate fields

\(\Q(\sqrt{110137}) \), 4.4.2923368263329.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 sibling: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/3.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }$ ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }$ ${\href{/LocalNumberField/19.8.0.1}{8} }$ ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
241Data not computed
457Data not computed