Normalized defining polynomial
\( x^{8} + 4552 x^{6} + 5856148 x^{4} + 2509290000 x^{2} + 241016802642 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(41468252123822947209337372672=2^{31}\cdot 569^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $3777.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 569$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(18208=2^{5}\cdot 569\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{18208}(1,·)$, $\chi_{18208}(5413,·)$, $\chi_{18208}(6345,·)$, $\chi_{18208}(5197,·)$, $\chi_{18208}(1137,·)$, $\chi_{18208}(277,·)$, $\chi_{18208}(3897,·)$, $\chi_{18208}(9597,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{231} a^{5} + \frac{2}{231} a^{3} - \frac{8}{77} a$, $\frac{1}{997973949357} a^{6} + \frac{89188396684}{997973949357} a^{4} - \frac{19720629953}{997973949357} a^{2} + \frac{76078642}{205725407}$, $\frac{1}{62872358809491} a^{7} - \frac{1536507803}{62872358809491} a^{5} - \frac{7186988084426}{62872358809491} a^{3} + \frac{32930028554}{142567707051} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{12}\times C_{311088}$, which has order $119457792$ (assuming GRH)
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{330784}{205725407} a^{6} + \frac{1267078449}{205725407} a^{4} + \frac{1089418290660}{205725407} a^{2} + \frac{123566272294825}{205725407} \), \( \frac{11560372}{997973949357} a^{6} + \frac{245816118040}{997973949357} a^{4} + \frac{179983944924181}{997973949357} a^{2} + \frac{4054945904873}{205725407} \), \( \frac{105121593}{110885994373} a^{6} + \frac{1402187280722}{332657983119} a^{4} + \frac{1675623412380415}{332657983119} a^{2} + \frac{355929445404553}{205725407} \) (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 96713.9741769 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{1138}) \), 4.4.377282578432.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.4 | $x^{8} + 24 x^{4} + 8 x^{2} + 16 x + 46$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 569 | Data not computed | ||||||