Normalized defining polynomial
\( x^{8} + 33 x^{6} + 330 x^{4} + 1089 x^{2} + 363 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3967389600768=2^{10}\cdot 3^{7}\cdot 11^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11} a^{4}$, $\frac{1}{11} a^{5}$, $\frac{1}{22} a^{6} - \frac{1}{2}$, $\frac{1}{44} a^{7} - \frac{1}{44} a^{6} - \frac{1}{22} a^{5} - \frac{1}{22} a^{4} - \frac{1}{4} a + \frac{1}{4}$
Class group and class number
$C_{2}\times C_{2}\times C_{6}$, which has order $24$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{5}{22} a^{6} + \frac{64}{11} a^{4} + 32 a^{2} + \frac{23}{2} \), \( \frac{4}{11} a^{6} + \frac{103}{11} a^{4} + 52 a^{2} + 16 \), \( \frac{2}{11} a^{6} + \frac{50}{11} a^{4} + 23 a^{2} - 2 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 86.1661860126 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), 4.4.13068.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_11.2t1.1c1 | $1$ | $ 3 \cdot 11 $ | $x^{2} - x - 8$ | $C_2$ (as 2T1) | $1$ | $1$ |
| 1.2e2_3.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 $ | $x^{2} - 3$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| 1.2e2_11.2t1.1c1 | $1$ | $ 2^{2} \cdot 11 $ | $x^{2} - 11$ | $C_2$ (as 2T1) | $1$ | $1$ | |
| * | 2.2e2_3e2_11.4t3.2c1 | $2$ | $ 2^{2} \cdot 3^{2} \cdot 11 $ | $x^{4} - 2 x^{3} - 3 x^{2} + 4 x + 1$ | $D_{4}$ (as 4T3) | $1$ | $2$ |
| * | 2.2e4_3e2_11e2.8t8.2c1 | $2$ | $ 2^{4} \cdot 3^{2} \cdot 11^{2}$ | $x^{8} + 33 x^{6} + 330 x^{4} + 1089 x^{2} + 363$ | $QD_{16}$ (as 8T8) | $0$ | $-2$ |
| * | 2.2e4_3e2_11e2.8t8.2c2 | $2$ | $ 2^{4} \cdot 3^{2} \cdot 11^{2}$ | $x^{8} + 33 x^{6} + 330 x^{4} + 1089 x^{2} + 363$ | $QD_{16}$ (as 8T8) | $0$ | $-2$ |