Properties

Label 8.0.392040000.1
Degree $8$
Signature $[0, 4]$
Discriminant $2^{6}\cdot 3^{4}\cdot 5^{4}\cdot 11^{2}$
Root discriminant $11.86$
Ramified primes $2, 3, 5, 11$
Class number $2$
Class group $[2]$
Galois group $C_2^3 : D_4 $ (as 8T22)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![16, -28, -23, 36, 31, -8, -9, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 9*x^6 - 8*x^5 + 31*x^4 + 36*x^3 - 23*x^2 - 28*x + 16)
 
gp: K = bnfinit(x^8 - 9*x^6 - 8*x^5 + 31*x^4 + 36*x^3 - 23*x^2 - 28*x + 16, 1)
 

Normalized defining polynomial

\( x^{8} - 9 x^{6} - 8 x^{5} + 31 x^{4} + 36 x^{3} - 23 x^{2} - 28 x + 16 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(392040000=2^{6}\cdot 3^{4}\cdot 5^{4}\cdot 11^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $11.86$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{5} - \frac{1}{4} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{136} a^{7} + \frac{11}{136} a^{6} + \frac{5}{68} a^{5} + \frac{31}{136} a^{3} - \frac{31}{136} a^{2} + \frac{5}{68} a + \frac{6}{17}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{7}{136} a^{7} + \frac{9}{136} a^{6} - \frac{33}{68} a^{5} - a^{4} + \frac{149}{136} a^{3} + \frac{531}{136} a^{2} + \frac{69}{68} a - \frac{26}{17} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{3}{136} a^{7} - \frac{1}{136} a^{6} - \frac{19}{68} a^{5} + \frac{161}{136} a^{3} + \frac{77}{136} a^{2} - \frac{121}{68} a + \frac{1}{17} \),  \( \frac{7}{136} a^{7} - \frac{25}{136} a^{6} - \frac{4}{17} a^{5} + a^{4} + \frac{149}{136} a^{3} - \frac{387}{136} a^{2} - \frac{21}{17} a + \frac{25}{17} \),  \( \frac{3}{136} a^{7} - \frac{1}{136} a^{6} - \frac{19}{68} a^{5} + \frac{93}{136} a^{3} + \frac{77}{136} a^{2} - \frac{19}{68} a + \frac{1}{17} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19.7894026356 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$Q_8:C_2^2$ (as 8T22):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 17 conjugacy class representatives for $C_2^3 : D_4 $
Character table for $C_2^3 : D_4 $

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}, \sqrt{5})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ R ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.2.0.1$x^{2} - x + 1$$1$$2$$0$$C_2$$[\ ]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.4.2.2$x^{4} - 11 x^{2} + 847$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
11.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
1.3_11.2t1.1c1$1$ $ 3 \cdot 11 $ $x^{2} - x - 8$ $C_2$ (as 2T1) $1$ $1$
1.3_5_11.2t1.1c1$1$ $ 3 \cdot 5 \cdot 11 $ $x^{2} - x - 41$ $C_2$ (as 2T1) $1$ $1$
* 1.5.2t1.1c1$1$ $ 5 $ $x^{2} - x - 1$ $C_2$ (as 2T1) $1$ $1$
1.2e3_3_5.2t1.2c1$1$ $ 2^{3} \cdot 3 \cdot 5 $ $x^{2} + 30$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_5_11.2t1.2c1$1$ $ 2^{3} \cdot 5 \cdot 11 $ $x^{2} + 110$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_3.2t1.2c1$1$ $ 2^{3} \cdot 3 $ $x^{2} + 6$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_11.2t1.2c1$1$ $ 2^{3} \cdot 11 $ $x^{2} + 22$ $C_2$ (as 2T1) $1$ $-1$
1.11.2t1.1c1$1$ $ 11 $ $x^{2} - x + 3$ $C_2$ (as 2T1) $1$ $-1$
* 1.3.2t1.1c1$1$ $ 3 $ $x^{2} - x + 1$ $C_2$ (as 2T1) $1$ $-1$
1.5_11.2t1.1c1$1$ $ 5 \cdot 11 $ $x^{2} - x + 14$ $C_2$ (as 2T1) $1$ $-1$
* 1.3_5.2t1.1c1$1$ $ 3 \cdot 5 $ $x^{2} - x + 4$ $C_2$ (as 2T1) $1$ $-1$
1.2e3_5.2t1.1c1$1$ $ 2^{3} \cdot 5 $ $x^{2} - 10$ $C_2$ (as 2T1) $1$ $1$
1.2e3_3_5_11.2t1.1c1$1$ $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $ $x^{2} - 330$ $C_2$ (as 2T1) $1$ $1$
1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
1.2e3_3_11.2t1.1c1$1$ $ 2^{3} \cdot 3 \cdot 11 $ $x^{2} - 66$ $C_2$ (as 2T1) $1$ $1$
* 4.2e6_3e2_5e2_11e2.8t22.8c1$4$ $ 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}$ $x^{8} - 9 x^{6} - 8 x^{5} + 31 x^{4} + 36 x^{3} - 23 x^{2} - 28 x + 16$ $C_2^3 : D_4 $ (as 8T22) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.