Properties

Label 8.0.378535936.1
Degree $8$
Signature $[0, 4]$
Discriminant $378535936$
Root discriminant $11.81$
Ramified primes $2, 19$
Class number $1$
Class group trivial
Galois group $Q_8:C_2$ (as 8T11)

Related objects

Downloads

Learn more about

Show commands for: SageMath / Pari/GP / Magma

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 20*x^6 - 44*x^5 + 98*x^4 - 128*x^3 + 144*x^2 - 96*x + 34)
 
gp: K = bnfinit(x^8 - 4*x^7 + 20*x^6 - 44*x^5 + 98*x^4 - 128*x^3 + 144*x^2 - 96*x + 34, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![34, -96, 144, -128, 98, -44, 20, -4, 1]);
 

\(x^{8} - 4 x^{7} + 20 x^{6} - 44 x^{5} + 98 x^{4} - 128 x^{3} + 144 x^{2} - 96 x + 34\)  Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 

Invariants

Degree:  $8$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
Signature:  $[0, 4]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
Discriminant:  \(378535936\)\(\medspace = 2^{20}\cdot 19^{2}\)
sage: K.disc()
 
gp: K.disc
 
magma: Discriminant(Integers(K));
 
Root discriminant:  $11.81$
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
Ramified primes:  $2, 19$
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(Integers(K)));
 
$|\Aut(K/\Q)|$:  $4$
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{85} a^{6} + \frac{7}{17} a^{5} + \frac{2}{85} a^{4} - \frac{6}{85} a^{3} - \frac{12}{85} a^{2} - \frac{33}{85} a - \frac{1}{5}$, $\frac{1}{85} a^{7} - \frac{33}{85} a^{5} + \frac{9}{85} a^{4} + \frac{28}{85} a^{3} - \frac{38}{85} a^{2} + \frac{33}{85} a$  Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, f := UnitGroup(K);
 
Rank:  $3$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
Torsion generator:  \( -\frac{2}{85} a^{7} - \frac{19}{85} a^{5} - \frac{18}{85} a^{4} - \frac{56}{85} a^{3} - \frac{9}{85} a^{2} - \frac{66}{85} a + 1 \) (order $8$)  Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K!f(g): g in Generators(UK)];
 
Regulator:  \( 55.0761610673 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 

Class number formula

$\displaystyle\lim_{s\to 1} (s-1)\zeta_K(s) \approx\frac{2^{0}\cdot(2\pi)^{4}\cdot 55.0761610673 \cdot 1}{8\sqrt{378535936}}\approx 0.551492474014$

Galois group

$D_4:C_2$ (as 8T11):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: GaloisGroup(K);
 
A solvable group of order 16
The 10 conjugacy class representatives for $Q_8:C_2$
Character table for $Q_8:C_2$

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\zeta_{8})\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: Deg 16
Degree 8 siblings: 8.4.136651472896.2, 8.0.8540717056.3

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.1.0.1}{1} }^{8}$ R ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.20.55$x^{8} + 4 x^{6} + 4 x^{5} + 6 x^{4} + 2$$8$$1$$20$$Q_8:C_2$$[2, 3, 3]^{2}$
$19$19.4.2.2$x^{4} - 19 x^{2} + 722$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
19.4.0.1$x^{4} - 2 x + 10$$1$$4$$0$$C_4$$[\ ]^{4}$

Artin representations

Label Dimension Conductor Artin stem field $G$ Ind $\chi(c)$
* 1.1.1t1.a.a$1$ $1$ \(\Q\) $C_1$ $1$ $1$
1.76.2t1.a.a$1$ $ 2^{2} \cdot 19 $ \(\Q(\sqrt{19}) \) $C_2$ (as 2T1) $1$ $1$
* 1.8.2t1.b.a$1$ $ 2^{3}$ \(\Q(\sqrt{-2}) \) $C_2$ (as 2T1) $1$ $-1$
1.152.2t1.b.a$1$ $ 2^{3} \cdot 19 $ \(\Q(\sqrt{-38}) \) $C_2$ (as 2T1) $1$ $-1$
1.19.2t1.a.a$1$ $ 19 $ \(\Q(\sqrt{-19}) \) $C_2$ (as 2T1) $1$ $-1$
* 1.8.2t1.a.a$1$ $ 2^{3}$ \(\Q(\sqrt{2}) \) $C_2$ (as 2T1) $1$ $1$
* 1.4.2t1.a.a$1$ $ 2^{2}$ \(\Q(\sqrt{-1}) \) $C_2$ (as 2T1) $1$ $-1$
1.152.2t1.a.a$1$ $ 2^{3} \cdot 19 $ \(\Q(\sqrt{38}) \) $C_2$ (as 2T1) $1$ $1$
* 2.1216.8t11.a.a$2$ $ 2^{6} \cdot 19 $ 8.0.378535936.1 $Q_8:C_2$ (as 8T11) $0$ $0$
* 2.1216.8t11.a.b$2$ $ 2^{6} \cdot 19 $ 8.0.378535936.1 $Q_8:C_2$ (as 8T11) $0$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.