Normalized defining polynomial
\( x^{8} + 40 x^{6} + 1612 x^{4} - 480 x^{2} + 144 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(37341681094656=2^{12}\cdot 3^{4}\cdot 103^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.72$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 103$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{19344} a^{6} - \frac{1}{24} a^{4} + \frac{1}{12} a^{2} - \frac{1}{2} a - \frac{10}{403}$, $\frac{1}{58032} a^{7} + \frac{1}{36} a^{5} - \frac{1}{18} a^{3} + \frac{383}{2418} a$
Class group and class number
$C_{3}\times C_{3}\times C_{6}$, which has order $54$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5}{2418} a^{6} - \frac{1}{12} a^{4} - \frac{10}{3} a^{2} + \frac{400}{403} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{5}{1612} a^{7} + \frac{1}{6448} a^{6} + \frac{1}{8} a^{5} + 5 a^{3} + \frac{9}{806} a - \frac{463}{806} \), \( \frac{203}{9672} a^{7} - \frac{1}{6448} a^{6} + \frac{5}{6} a^{5} + \frac{403}{12} a^{3} - \frac{8090}{403} a + \frac{7717}{806} \), \( \frac{17}{4464} a^{7} + \frac{1}{6448} a^{6} + \frac{1}{72} a^{5} - \frac{7}{8} a^{4} - \frac{1}{36} a^{3} + \frac{1}{4} a^{2} + \frac{1}{186} a - \frac{30}{403} \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 906.718114264 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-309}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{103}) \), \(\Q(\sqrt{-3}, \sqrt{103})\), 4.0.14832.1 x2, 4.2.2036928.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.2036928.1, 4.0.14832.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.13 | $x^{8} + 12 x^{4} + 16$ | $4$ | $2$ | $12$ | $D_4$ | $[2, 2]^{2}$ |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $103$ | 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 103.4.2.1 | $x^{4} + 927 x^{2} + 265225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e2_103.2t1.1c1 | $1$ | $ 2^{2} \cdot 103 $ | $x^{2} - 103$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.3.2t1.1c1 | $1$ | $ 3 $ | $x^{2} - x + 1$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.2e2_3_103.2t1.1c1 | $1$ | $ 2^{2} \cdot 3 \cdot 103 $ | $x^{2} + 309$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.2e4_3_103.4t3.5c1 | $2$ | $ 2^{4} \cdot 3 \cdot 103 $ | $x^{8} + 40 x^{6} + 1612 x^{4} - 480 x^{2} + 144$ | $D_4$ (as 8T4) | $1$ | $0$ |