Normalized defining polynomial
\( x^{8} + 40x^{6} + 1612x^{4} - 480x^{2} + 144 \)
Invariants
| Degree: | $8$ |
| |
| Signature: | $[0, 4]$ |
| |
| Discriminant: |
\(37341681094656\)
\(\medspace = 2^{12}\cdot 3^{4}\cdot 103^{4}\)
|
| |
| Root discriminant: | \(49.72\) |
| |
| Galois root discriminant: | $2^{3/2}3^{1/2}103^{1/2}\approx 49.71921157862421$ | ||
| Ramified primes: |
\(2\), \(3\), \(103\)
|
| |
| Discriminant root field: | \(\Q\) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $D_4$ |
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
| Maximal CM subfield: | \(\Q(\sqrt{-3}, \sqrt{103})\) | ||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2}a^{2}$, $\frac{1}{2}a^{3}$, $\frac{1}{8}a^{4}-\frac{1}{4}a^{3}-\frac{1}{4}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{8}a^{5}-\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{19344}a^{6}-\frac{1}{24}a^{4}+\frac{1}{12}a^{2}-\frac{1}{2}a-\frac{10}{403}$, $\frac{1}{58032}a^{7}+\frac{1}{36}a^{5}-\frac{1}{18}a^{3}+\frac{383}{2418}a$
| Monogenic: | No | |
| Index: | Not computed | |
| Inessential primes: | $3$ |
Class group and class number
| Ideal class group: | $C_{3}\times C_{3}\times C_{6}$, which has order $54$ |
| |
| Narrow class group: | $C_{3}\times C_{3}\times C_{6}$, which has order $54$ |
|
Unit group
| Rank: | $3$ |
| |
| Torsion generator: |
\( -\frac{5}{2418} a^{6} - \frac{1}{12} a^{4} - \frac{10}{3} a^{2} + \frac{400}{403} \)
(order $6$)
|
| |
| Fundamental units: |
$\frac{5}{1612}a^{7}+\frac{1}{6448}a^{6}+\frac{1}{8}a^{5}+5a^{3}+\frac{9}{806}a-\frac{463}{806}$, $\frac{203}{9672}a^{7}-\frac{1}{6448}a^{6}+\frac{5}{6}a^{5}+\frac{403}{12}a^{3}-\frac{8090}{403}a+\frac{7717}{806}$, $\frac{17}{4464}a^{7}+\frac{1}{6448}a^{6}+\frac{1}{72}a^{5}-\frac{7}{8}a^{4}-\frac{1}{36}a^{3}+\frac{1}{4}a^{2}+\frac{1}{186}a-\frac{30}{403}$
|
| |
| Regulator: | \( 906.718114264 \) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{4}\cdot 906.718114264 \cdot 54}{6\cdot\sqrt{37341681094656}}\cr\approx \mathstrut & 2.08131273764 \end{aligned}\]
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-309}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{103}) \), \(\Q(\sqrt{-3}, \sqrt{103})\), 4.0.14832.1 x2, 4.2.2036928.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.2036928.1, 4.0.14832.1 |
| Minimal sibling: | 4.0.14832.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/padicField/5.4.0.1}{4} }^{2}$ | ${\href{/padicField/7.2.0.1}{2} }^{4}$ | ${\href{/padicField/11.2.0.1}{2} }^{4}$ | ${\href{/padicField/13.1.0.1}{1} }^{8}$ | ${\href{/padicField/17.2.0.1}{2} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{4}$ | ${\href{/padicField/23.4.0.1}{4} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{4}$ | ${\href{/padicField/31.2.0.1}{2} }^{4}$ | ${\href{/padicField/37.2.0.1}{2} }^{4}$ | ${\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.1.0.1}{1} }^{8}$ | ${\href{/padicField/47.2.0.1}{2} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(2\)
| 2.2.4.12a1.1 | $x^{8} + 4 x^{7} + 12 x^{6} + 22 x^{5} + 31 x^{4} + 30 x^{3} + 22 x^{2} + 10 x + 5$ | $4$ | $2$ | $12$ | $D_4$ | $$[2, 2]^{2}$$ |
|
\(3\)
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 3.1.2.1a1.1 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
|
\(103\)
| 103.2.2.2a1.2 | $x^{4} + 204 x^{3} + 10414 x^{2} + 1020 x + 128$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
| 103.2.2.2a1.2 | $x^{4} + 204 x^{3} + 10414 x^{2} + 1020 x + 128$ | $2$ | $2$ | $2$ | $C_2^2$ | $$[\ ]_{2}^{2}$$ |
Artin representations
| Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| *8 | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
| *8 | 1.412.2t1.a.a | $1$ | $ 2^{2} \cdot 103 $ | \(\Q(\sqrt{103}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
| *8 | 1.3.2t1.a.a | $1$ | $ 3 $ | \(\Q(\sqrt{-3}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *8 | 1.1236.2t1.a.a | $1$ | $ 2^{2} \cdot 3 \cdot 103 $ | \(\Q(\sqrt{-309}) \) | $C_2$ (as 2T1) | $1$ | $-1$ |
| *16 | 2.4944.4t3.a.a | $2$ | $ 2^{4} \cdot 3 \cdot 103 $ | 8.0.37341681094656.1 | $D_4$ (as 8T4) | $1$ | $0$ |