Normalized defining polynomial
\( x^{8} - 12 x^{6} + 72 x^{4} + 328 x^{2} + 324 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(350312464384=2^{22}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $27.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{24} a^{4} - \frac{1}{6} a^{3} + \frac{5}{12} a^{2} + \frac{1}{3} a - \frac{1}{4}$, $\frac{1}{72} a^{5} + \frac{1}{36} a^{3} + \frac{5}{36} a$, $\frac{1}{72} a^{6} - \frac{1}{72} a^{4} - \frac{1}{6} a^{3} - \frac{5}{18} a^{2} + \frac{1}{3} a + \frac{1}{4}$, $\frac{1}{144} a^{7} + \frac{1}{24} a^{3} - \frac{1}{2} a^{2} - \frac{5}{36} a$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | \( \frac{1}{72} a^{7} - \frac{7}{36} a^{5} + \frac{49}{36} a^{3} + \frac{22}{9} a + 1 \), \( \frac{1}{72} a^{5} + \frac{1}{36} a^{3} + \frac{5}{36} a \), \( \frac{1}{24} a^{6} + \frac{1}{72} a^{5} - \frac{7}{12} a^{4} - \frac{11}{36} a^{3} + \frac{15}{4} a^{2} + \frac{65}{36} a + 8 \) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 92.9911600183 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8 |
| The 5 conjugacy class representatives for $D_4$ |
| Character table for $D_4$ |
Intermediate fields
| \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-17}) \), \(\Q(\sqrt{2}, \sqrt{-17})\), 4.2.17408.1 x2, 4.0.147968.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 4 siblings: | 4.2.17408.1, 4.0.147968.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.22.87 | $x^{8} + 4 x^{7} + 6 x^{4} + 12 x^{2} + 2$ | $8$ | $1$ | $22$ | $D_4$ | $[2, 3, 7/2]$ |
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.2e2_17.2t1.1c1 | $1$ | $ 2^{2} \cdot 17 $ | $x^{2} + 17$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| * | 1.2e3.2t1.1c1 | $1$ | $ 2^{3}$ | $x^{2} - 2$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.2e3_17.2t1.2c1 | $1$ | $ 2^{3} \cdot 17 $ | $x^{2} + 34$ | $C_2$ (as 2T1) | $1$ | $-1$ |
| *2 | 2.2e7_17.4t3.10c1 | $2$ | $ 2^{7} \cdot 17 $ | $x^{8} - 12 x^{6} + 72 x^{4} + 328 x^{2} + 324$ | $D_4$ (as 8T4) | $1$ | $0$ |