Properties

 Label 8.0.339738624.3 Degree $8$ Signature $[0, 4]$ Discriminant $2^{22}\cdot 3^{4}$ Root discriminant $11.65$ Ramified primes $2, 3$ Class number $2$ Class group $[2]$ Galois group $D_4$ (as 8T4)

Related objects

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 4, 4, 4, 12, -4, 4, -4, 1]);

sage: x = polygen(QQ); K.<a> = NumberField(x^8 - 4*x^7 + 4*x^6 - 4*x^5 + 12*x^4 + 4*x^3 + 4*x^2 + 4*x + 1)

gp: K = bnfinit(x^8 - 4*x^7 + 4*x^6 - 4*x^5 + 12*x^4 + 4*x^3 + 4*x^2 + 4*x + 1, 1)

Normalizeddefining polynomial

$$x^{8} - 4 x^{7} + 4 x^{6} - 4 x^{5} + 12 x^{4} + 4 x^{3} + 4 x^{2} + 4 x + 1$$

magma: DefiningPolynomial(K);

sage: K.defining_polynomial()

gp: K.pol

Invariants

 Degree: $8$ magma: Degree(K);  sage: K.degree()  gp: poldegree(K.pol) Signature: $[0, 4]$ magma: Signature(K);  sage: K.signature()  gp: K.sign Discriminant: $$339738624=2^{22}\cdot 3^{4}$$ magma: Discriminant(Integers(K));  sage: K.disc()  gp: K.disc Root discriminant: $11.65$ magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));  sage: (K.disc().abs())^(1./K.degree())  gp: abs(K.disc)^(1/poldegree(K.pol)) Ramified primes: $2, 3$ magma: PrimeDivisors(Discriminant(Integers(K)));  sage: K.disc().support()  gp: factor(abs(K.disc))[,1]~ $|\Gal(K/\Q)|$: $8$ This field is Galois over $\Q$. This is not a CM field.

Integral basis (with respect to field generator $$a$$)

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{11} a^{6} + \frac{3}{11} a^{5} + \frac{4}{11} a^{4} + \frac{5}{11} a^{3} - \frac{4}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{11} a^{7} - \frac{5}{11} a^{5} + \frac{4}{11} a^{4} + \frac{3}{11} a^{3} + \frac{4}{11} a^{2} + \frac{1}{11} a + \frac{3}{11}$

magma: IntegralBasis(K);

sage: K.integral_basis()

gp: K.zk

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);

sage: K.class_group().invariants()

gp: K.clgp

Unit group

magma: UK, f := UnitGroup(K);

sage: UK = K.unit_group()

 Rank: $3$ magma: UnitRank(K);  sage: UK.rank()  gp: K.fu Torsion generator: $$-1$$ (order $2$) magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);  sage: UK.torsion_generator()  gp: K.tu[2] Fundamental units: $$\frac{5}{11} a^{7} - \frac{24}{11} a^{6} + \frac{35}{11} a^{5} - \frac{32}{11} a^{4} + \frac{71}{11} a^{3} - \frac{27}{11} a^{2} - \frac{1}{11} a + \frac{6}{11}$$,  $$\frac{5}{11} a^{7} - 2 a^{6} + \frac{30}{11} a^{5} - \frac{35}{11} a^{4} + \frac{70}{11} a^{3} - \frac{2}{11} a^{2} + \frac{38}{11} a + \frac{15}{11}$$,  $$a$$ magma: [K!f(g): g in Generators(UK)];  sage: UK.fundamental_units()  gp: K.fu Regulator: $$8.58619336777$$ magma: Regulator(K);  sage: K.regulator()  gp: K.reg

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);

sage: K.galois_group(type='pari')

gp: polgalois(K.pol)

 A solvable group of order 8 The 5 conjugacy class representatives for $D_4$ Character table for $D_4$

Intermediate fields

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

 Degree 4 siblings: 4.2.4608.2, 4.0.3072.1

Frobenius cycle types

 $p$ Cycle type 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

magma: idealfactors := Factorization(p*Integers(K)); // get the data

magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];

sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]

gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:

gp: idealfactors = idealprimedec(K, p); \\ get the data

gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.22.89$x^{8} + 4 x^{7} + 2 x^{4} + 4 x^{2} + 6$$8$$1$$22$$D_4$$[2, 3, 7/2] 33.4.2.1x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.2e2_3.2t1.1c1$1$ $2^{2} \cdot 3$ $x^{2} - 3$ $C_2$ (as 2T1) $1$ $1$
* 1.2e3.2t1.2c1$1$ $2^{3}$ $x^{2} + 2$ $C_2$ (as 2T1) $1$ $-1$
* 1.2e3_3.2t1.2c1$1$ $2^{3} \cdot 3$ $x^{2} + 6$ $C_2$ (as 2T1) $1$ $-1$
*2 2.2e7_3.4t3.5c1$2$ $2^{7} \cdot 3$ $x^{8} - 4 x^{7} + 4 x^{6} - 4 x^{5} + 12 x^{4} + 4 x^{3} + 4 x^{2} + 4 x + 1$ $D_4$ (as 8T4) $1$ $0$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.