Properties

Label 8.0.33969356294066176.2
Degree $8$
Signature $[0, 4]$
Discriminant $2^{12}\cdot 1697^{4}$
Root discriminant $116.52$
Ramified primes $2, 1697$
Class number $363$
Class group $[11, 33]$
Galois group $D_4$ (as 8T4)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![51076, 0, 5860, 0, 2301, 0, 86, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^8 + 86*x^6 + 2301*x^4 + 5860*x^2 + 51076)
 
gp: K = bnfinit(x^8 + 86*x^6 + 2301*x^4 + 5860*x^2 + 51076, 1)
 

Normalized defining polynomial

\( x^{8} + 86 x^{6} + 2301 x^{4} + 5860 x^{2} + 51076 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $8$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 4]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(33969356294066176=2^{12}\cdot 1697^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $116.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 1697$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{160832} a^{6} + \frac{1107}{20104} a^{4} + \frac{67981}{160832} a^{2} + \frac{37711}{80416}$, $\frac{1}{18174016} a^{7} + \frac{217225}{2271752} a^{5} + \frac{349437}{18174016} a^{3} - \frac{1}{2} a^{2} + \frac{2490399}{9087008} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{11}\times C_{33}$, which has order $363$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $3$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  \( \frac{67}{1135876} a^{7} + \frac{2655}{567938} a^{5} + \frac{126821}{1135876} a^{3} - \frac{117039}{567938} a - 1 \),  \( \frac{2061}{2271752} a^{7} + \frac{289}{80416} a^{6} + \frac{47193}{567938} a^{5} + \frac{3285}{10052} a^{4} + \frac{5723653}{2271752} a^{3} + \frac{708541}{80416} a^{2} + \frac{20134463}{1135876} a + \frac{605231}{40208} \),  \( \frac{1141008740}{2513} a^{6} + \frac{69031028770}{2513} a^{4} + \frac{148331136200}{2513} a^{2} + \frac{1609729481901}{2513} \)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2642.03156056 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4$ (as 8T4):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 8
The 5 conjugacy class representatives for $D_4$
Character table for $D_4$

Intermediate fields

\(\Q(\sqrt{3394}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{1697}) \), \(\Q(\sqrt{2}, \sqrt{1697})\), 4.0.108608.1 x2, 4.0.23038472.1 x2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 4 siblings: 4.0.108608.1, 4.0.23038472.1

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
1697Data not computed

Artin representations

Label Dimension Conductor Defining polynomial of Artin field $G$ Ind $\chi(c)$
* 1.1.1t1.1c1$1$ $1$ $x$ $C_1$ $1$ $1$
* 1.1697.2t1.1c1$1$ $ 1697 $ $x^{2} - x - 424$ $C_2$ (as 2T1) $1$ $1$
* 1.2e3.2t1.1c1$1$ $ 2^{3}$ $x^{2} - 2$ $C_2$ (as 2T1) $1$ $1$
* 1.2e3_1697.2t1.1c1$1$ $ 2^{3} \cdot 1697 $ $x^{2} - 3394$ $C_2$ (as 2T1) $1$ $1$
*2 2.2e3_1697.4t3.6c1$2$ $ 2^{3} \cdot 1697 $ $x^{8} + 86 x^{6} + 2301 x^{4} + 5860 x^{2} + 51076$ $D_4$ (as 8T4) $1$ $-2$

Data is given for all irreducible representations of the Galois group for the Galois closure of this field. Those marked with * are summands in the permutation representation coming from this field. Representations which appear with multiplicity greater than one are indicated by exponents on the *.