Normalized defining polynomial
\( x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103 \)
Invariants
| Degree: | $8$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 4]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33237432513=3^{4}\cdot 17^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(51=3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{51}(32,·)$, $\chi_{51}(1,·)$, $\chi_{51}(2,·)$, $\chi_{51}(4,·)$, $\chi_{51}(8,·)$, $\chi_{51}(13,·)$, $\chi_{51}(16,·)$, $\chi_{51}(26,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{798953} a^{7} + \frac{331532}{798953} a^{6} + \frac{236450}{798953} a^{5} + \frac{106338}{798953} a^{4} - \frac{43909}{798953} a^{3} - \frac{358898}{798953} a^{2} - \frac{58192}{798953} a - \frac{250292}{798953}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $3$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27.6959098582 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 8 |
| The 8 conjugacy class representatives for $C_8$ |
| Character table for $C_8$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }$ | ${\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.8.0.1}{8} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.2 | $x^{8} - 27 x^{2} + 162$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| $17$ | 17.8.7.1 | $x^{8} - 1377$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
Artin representations
| Label | Dimension | Conductor | Defining polynomial of Artin field | $G$ | Ind | $\chi(c)$ | |
|---|---|---|---|---|---|---|---|
| * | 1.1.1t1.1c1 | $1$ | $1$ | $x$ | $C_1$ | $1$ | $1$ |
| * | 1.3_17.8t1.1c1 | $1$ | $ 3 \cdot 17 $ | $x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.17.4t1.1c1 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.3_17.8t1.1c2 | $1$ | $ 3 \cdot 17 $ | $x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.17.2t1.1c1 | $1$ | $ 17 $ | $x^{2} - x - 4$ | $C_2$ (as 2T1) | $1$ | $1$ |
| * | 1.3_17.8t1.1c3 | $1$ | $ 3 \cdot 17 $ | $x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103$ | $C_8$ (as 8T1) | $0$ | $-1$ |
| * | 1.17.4t1.1c2 | $1$ | $ 17 $ | $x^{4} - x^{3} - 6 x^{2} + x + 1$ | $C_4$ (as 4T1) | $0$ | $1$ |
| * | 1.3_17.8t1.1c4 | $1$ | $ 3 \cdot 17 $ | $x^{8} - x^{7} + 10 x^{6} - 11 x^{5} + 15 x^{4} - 61 x^{3} + 58 x^{2} - 47 x + 103$ | $C_8$ (as 8T1) | $0$ | $-1$ |